植树问题的教学设计

时间:2024-10-20 11:39:23 教学设计 我要投稿

植树问题的教学设计[常用15篇]

  作为一位无私奉献的人民教师,编写教学设计是必不可少的,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。我们该怎么去写教学设计呢?下面是小编为大家整理的植树问题的教学设计,仅供参考,希望能够帮助到大家。

植树问题的教学设计[常用15篇]

植树问题的教学设计1

  一、教学目标:

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  二、教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  三、教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  四、教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  五、课前互动

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

  六、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。(板书课题:植树问题)

  七、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的'*场,*场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

  八、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

  九、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

  十、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

植树问题的教学设计2

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的.美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业

植树问题的教学设计3

  教学目标:

  1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重、难点:

  发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程:

 一、创设情境——培养意识

  1、师:同学们好!一起来看两组画面。

  (给学生播放荒漠化严重的和绿化优美的两组图片。)

  师:看了这两组画面,你更喜欢哪一种呢?

  师:怎样才能拥有这样美丽的环境呢?

  生:植树。

  师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!

  师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的`学问的,这节课我们就来探讨“植树问题”。——板题

  2、出示教学目标

  3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。

  师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?

  二、动手种树——探讨规律

  1、动手“种”树

  师:大家先看老师为大家准备的材料……(师介绍)

  出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?

  学生动手植树,师巡视。

  2、交流方案

  小组上台展示自己组的种树方案。

  两端都种

  两端不种

  只种一端

  3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?

  生仔细观察,得出猜想:两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

  三、验证规律

  1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。

  2、完成验证表格。

  师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)

  3、小组合作探究。

  4、展示。

  分三种情况汇报。

  5、梳理规律

  师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?

  相同点:都与间隔数有关

  不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1

  师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。

  四、解决问题

  师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?

  1、处理信息

  问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?

  生:种树!

  出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵

  师:根据这些信息你会提什么数学问题呢?

  生:一共可以种多少棵树?

  得不完整例题:

  实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?

  师:看着这道题,谁有话想说吗?

  生1:两端都种

  得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:受他的启发,还能提出什么样的问题?

  生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?

  生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?

  师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?

  生:两端都种

  2、抽取问题

  出示例题:(配图片)

  实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:愿意帮学校算算吗?

  3、学生试解。

  4、汇报交流。

  生汇报,师:能说说你的解题思路吗?

  师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。

  师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?

  5、探讨只种一端

  师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?

  生:只种一端。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)

  学生试解。

  6、探讨两端不种

  师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?

  生:两端不种。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)

  学生试解。

  五、小结方法——提升认识

  1、探讨方法

  师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!

  师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?

  (动手操作——提出猜想——画图验证——得出规律——解决问题)

  2、阅读课本

  (1)阅读例1

  师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。

  师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?

  生:画图,找规律。

  师:真是好方法!大家掌握了吗?

  (2)阅读例2

  师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?

  生完成,交流。

  六、拓展练习

  1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)

  2、生尝试解答。

  3、全班交流。

  七、全课小结

  师:通过今天的学习,你有什么收获呢?

  生畅谈自己的收获。

  师小结:收获方法比收获知识更重要,祝贺大家!

  板书设计:

  植树问题

  两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

植树问题的教学设计4

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的'关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=20xx+1=21(棵)

  100÷5=20xx+2=22(棵)

  100÷5=20xx+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

植树问题的教学设计5

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的`想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

植树问题的教学设计6

  教学内容:

  人教版四年级下册第八单元数学广角的所有例题,以及相关习题。

  教材分析:

  现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。

  本节课是把所有类型的植树问题归纳在一起,通过观察比较,得出公式,最后能够运用所学知识解决所有和植树问题相关的实际问题。

  教学目标:

  1、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  2、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  3、感受数学在日常生活中的广泛应用。

  教学重、难点:

  重点:掌握“植树问题”几种类型的特征。

  难点:解决所有和植树问题相关的实际问题。

  教学方法:

  巩固练习法。

  教具准备:

  多媒体课件。

  教学过程:

  一、创设情境,导入新课。

  1、直接揭示课题:今天我们来复习第八单元数学广角的植树问题。板书课题

  2、出示复习目标:

  (1)、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  (2)、感受数学在日常生活中的广泛应用。

  3、常见类型:

  (1)、两端都栽的植树问题;

  (2)、两端都不栽的`植树问题;

  (3)、一端栽、一端不栽的植树问题;

  (4)、封闭图形的植树问题。

  二、探索解决问题的方法

  1、出示例题:

  例题:在全长20米的小路上植树,每隔5米栽一棵,你能想出几种植树方案?

  2、学生自主尝试,教师巡视指导。

  3、小组合作交流。

  4、全班交流。

  特点棵树间隔数棵树与间隔数的关系

  方案1两端都栽54棵树=间隔数+1

  方案2两端都不栽34棵树=间隔数-1

  方案3一端栽,一端不栽44棵树=间隔数

  方案4封闭图形44棵树=间隔数

  5、总结学习方法:

  植树问题有高招,做题之前先分类。

  两端都栽,棵树=间隔数+1;

  两端都不栽,棵树=间隔数-1;

  一端栽,一端不栽,棵树=间隔数;

  封闭图形,棵树=间隔数。

  三、巩固提高、发展创新。

  1、在一条长400米的道路一旁安装路灯,每隔50米安装一座(两端都要安装),一共可以安装多少座路灯?

  2、两座楼房之间相距56米,每隔4米栽雪松一棵,一行能栽多少棵?

  3、学校要在80米的跑道一旁插彩旗,每隔5米插一面。如果一端不插,一共需要多少面彩旗?

  4、一个圆形池塘,它的周长是200米,每隔10米栽一棵柳树,需要树苗多少棵?

  以上四道题为基础巩固题,下面两道为拔高题。

  5、一根木料锯成4段要12分钟,锯成10段要几分钟?

  6、祁老师要上楼去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道祁老师去几楼的教室吗?

  四、全课小结。

  你在这一节课里学习了什么知识?

  师:其实数学就在我们身边,只要我们善于观察,勤于动脑,你就会发现生活中有很多有趣的数学问题。

植树问题的教学设计7

  教学内容:

  《植树问题》

  教学来源:

  人教版小学数学教材第九册第七单元《植树问题》

  教学对象:

  五年级学生

  备课人:

  张金玲

  基于标准:

  数学广角的教学目标可概括为以下几点:

  1、 感悟重要的数学思想方法;

  2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;

  3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

  教材分析:

  《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  学习目标:

  1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

  2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

  评价任务:

  任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

  任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

  【学习重点】:发现棵数与间隔数的`关系。

  【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

  【教学准备】:课件、小组学习单

  【教学过程】:

  一、导入新课

  1、猜谜语,直观认识间隔

  新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)

  同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)

  哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

  手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)

  我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)

  你发现什么了吗?(生说)

  的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

  二、探究规律 实现目标

  1、例题探究

  说起植树问题我们就先从植树谈起吧。请看例题。

  出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?

  A、从题中你能知道哪些信息?谁来说一说?生说,师画。

  它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……

  师小结:

  一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  B、算一算,一共要栽多少棵树?反馈答案:

  方法1:1000÷5=200(棵)

  方法2:1000÷5=200 200+2=22(棵)

  方法3:1000÷5=200 200+1=21(棵)

  疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)

  三、自主探究,发现规律

  1、化繁为简探规律

  是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)

  是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

植树问题的教学设计8

  教学内容:

  人教版四年级下册《数学广角——植树问题》例一及相应练习

  教材分析:

  本册《数学广角》主要渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)

  设计理念:

  自主探索,凸显学生个性;合作探究,构建和谐课堂。

  教学目标:

  一、知识与技能性:

  1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3.能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3.培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重点:

  从实际问题中发现植树问题(两端都种)的数学模型。

  教学难点:

  灵活运用植树问题(两端都种)的数量关系,正确解答生活中的实际问题。

  教具准备:

  课件、纸条、表格、直尺等。

  教学过程:

  一、课前交流,激趣导入

  1、活动交流

  师:同学们,我知道你们都聪明、好学、上进。今天我很高兴能与大家一起探索数的奥妙,你们欢迎吗?

  谢谢你们的掌声。下面请大家伸出你们懂事的双手,让老师看一看,可以吗?

  大家认真地看一看,将来我们就是要凭借这一双手,创造我们的幸福生活。

  同样也是这一双手,还藏着很多数学奥秘,你们想知道吗?

  2、教学“间隔”含义

  师:看着老师举起的这只右手,你们看见了几个手指?

  学生齐说:“5个手指头”。

  师:很好。你们再看看,这5个手指间有几个空格?

  生:4个

  师:很好!在数学上我们把这样的“空格”叫做间隔(板书)。

  大家再仔细观察自己的手,5个手指之间有4个间隔。那么,4个手指间有几个间隔呢?3个手指,2个手指呢?同桌互相说一说。

  师:你们发现手指数与间隔数的规律了吗?谁能勇敢地站起来告诉老师吗?

  答案:手指的个数比间隔数多“1”或间隔数比手指少1。

  3、导入课题

  实际生活中的“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔。

  今天,我们就以植树为例,一起来探索数学里间隔的奥秘。(板书课题:植树问题)

  课前导入这一部分,学生配合的比较好。而且学生之间发现“手指数与间隔数之间的联系”,这是非常好的,但是,我在这觉得这样是不是有点多余。可是我又觉得这里,让学生初步的感知这一数量之间的关系,其实是一个铺垫作用。想想也有此理。

  二、动手操作,初步感知

  1、创设情景(课件出示)

  师:我们学校为了进一步美化校园环境,准备在学校门口这条路的一

  边种上白桦树。

  师:你们想不想看看学校打算怎么种吗?我们一起来看看具体要求吧!

  2、理解题意

  [出示要求]:我们学校准备在学校门口长100米的这条路一边种上白桦树,每隔5米栽一棵(两端都栽),请问一共需要多少棵树苗?

  师:我想请一个同学来读一读,从这份要求,你能获得哪些信息?同学们可以小声交流一下,然后把你们交流的结果向全班同学汇报。(师根据学生汇报板书:总长、间距、间隔数、棵树)。

  师:两端都栽你们怎么认为的呢?

  指名说一说,然后师实物演示。

  师:每隔5米是什么意思?你能用自己理解的方式来告诉你的'同学吗?

  教师在学生汇报的基础上归纳小结。(两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间距是5米)

  师:好,你们能帮帮老师算一算,学校需要准备多少棵树苗呢?

  3、自主探究

  生:自由做题

  师:指点几个学生上台板演。同学们做完了吗?我们看同样的要求却出现了不同的答案。你们同意哪个呢?那学校究竟该买多少棵树苗呢?是20还是21……

  这个环节,不知是不是学生基础比较差,还是……我从学生的小组中发现只有一种答案没有别的,别的就是很离谱的过程。这里学生只知道100/5=20(棵)这一答案。这样使我在讲时就有点难。

  师:这样吧同学们以小组为单位,听清楚要求:利用你们准备的学具摆一摆。也可以用一条线段来代表100米的小路,用你们喜欢的图案表示树。把你们小组的想法在纸上画一画。(小组活动)

  4、汇报交流,展示思路

  师:同学们,你们探究出结果了吗?

  生:画线段的方法

  生:摆火柴的方法……

  师:初步推出棵数=间隔数+1(板书棵数)

  这里学生们有一部分的学生知道通过摆一摆的方法去探究出实际需要21棵。但是没有学生知道用线段来画,许多的学生不知所措。不知道怎么做。我在想是不是我讲解不清楚,可是有一部分的学生可以通过摆一摆得出这个规律呀。这可能对学生了解不够深吧。也许该用更简单的方法去授课。用20米长的小路,也许会有更好点的效果。

  三、合作探究,发现规律。

  1、探索规律

  学生汇报,师也同时在黑板具体教学摆一摆及画线段图的方法。进一步理解间距、间隔数

  师:学生都表现的不错,我们再来看一下这种规律发现过程。这是一条100米的小路,学校要求两端都栽,我先在一头栽上一棵树,隔5米栽一棵,隔5米栽一棵。现在是几棵树,几个间隔,现在呢?这又是几棵树,几个间隔……。好了,我不栽了。请同学们想一想6棵树几个间隔,8棵树几个间隔,10棵树几个间隔,100棵树几个间隔,那15个间隔几棵树,18个间隔几棵树,那20个间隔几棵树。

  师:从中你们发现了什么规律?

  生:(指名回答,要强调是在什么情况下。)棵数比间隔数多1,间隔数比棵数少1。

  师小结:两端都栽的情况下:“间隔数+1=棵数”

  “间隔数=棵数-1”(板书)

  请同学自己读一读。

  师:同学们,在两端都栽的情况下,棵数与间隔数有什么关系?

  请同学错的上台订正。

  师:同学们,我们在刚才探讨了在100米的小路上,两端都栽,每隔5米栽一棵,需要21棵树苗。我代表学校谢谢你们。

  2、运用规律

  师:如果让你来设计我们学校这条小路的植树方案,还是这100米长的小路的一边(两端都栽)还可以每隔几米栽一棵?(整米数)

  出示:表格。

  师:根据学生汇报,完成表格。这一部分可能是多余的。我在授课时,发现这样填表格起不了什么大的作用。

  四、应用规律,解决问题。

  师:现在我们得用用这个规律来解决数学问题

  师:还是这条小路,假如每隔两米栽一棵,在两端都要栽的情况下,需要几棵树苗呢?请你们口答这题。

  师:假如现在这条小路延长到200米,还是每隔5米一棵(两端都栽),需要几棵树苗呢?

  师:如果我种了5棵树,每隔5米栽一棵,从第一棵到最后一棵全长多少米呢。

  师:真棒,我发现学生学的非常的认真!我们刚据探讨出来的规律就运用的这么好。老师真佩服大家。运用植树的规律不仅能解决植树的问题,还能解决我们生活的实际问题。其实在日常生活中,在我们的周围有很多类似于植树问题的事件,同学们你能列举一些这样的事例吗?(学生汇报后,师用课件展示生活中的事例图片。)

  师再出示:安装路灯、电线杆、设立车站、摆花盆、走楼梯、建楼房、排队做早操等等。

  五、提升思维,巩固练习

  师:看来,数学知识与我们的实际生活有很密切的联系,我们平时一定认真观察,多留心身边的事物。

  师:运用今天所学的知识我们可以解决生活中一些相关的实际问题。

  1、做一做

  在全长1000米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?

  2、想一想

  在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?

  3、猜一猜。

  甲、乙、丙谁说的对?

  有100人参加春游活动,这列队伍中如果每两人平均距离是1米,请问这列队伍全长多少米?

  甲说:100米

  乙说:99米

  丙说:101米

  六、质疑:学习到这里,同学们想一想有没有什么不明白的地方,有的可以提出来我们一起解决。

  七、归纳:(同学们学得真不错,让我们一起完成一首儿歌吧!)教学儿歌

  小树苗,栽一栽,

  两端都栽问题来,

  间数多1是棵数,

  棵数少1是间数,

  怎样求出间隔数?

  全长除以间长度。

  八、课堂小结,课外延伸

  师:同学们坐好了,这节课上同学们个个都表现得特别棒,积极思考,涌跃回答问题,这一却都给了我快乐,给了我鼓励,和同学们在一起我很幸福,你们快乐吗?那你又有什么收获呢?谁能说说。

  这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。

  板书:植树问题

  总长间距间隔数棵数

  20米5米45棵

  20÷5=44+1=5(棵)

  两端都要栽:间隔数+1=植树棵数

  间隔数=植树棵数-1

  间隔数=总长度÷间隔

  教学反思:

  不足之处

  一、设计基本可以,但任务没有完成。

  基本上没有讲练习,课前准备的练习都没有去练。因为没有时间。所有的时间都花在的探讨之中,所以时间不够。

  二、前松,好!后紧,乱!

  由于,前面时间把握不够好,时间大多数都花掉了,到了后面就很紧,由此而乱。在教学儿歌时就草草的收场了。

  我觉得这节课,自己还是比较满意的。我对自己说,又有一次大的进步。从无形中就提高了自己。我感谢这次的活动机会。在这节课的突破了重难点,学生能自己得出这个规律,我已很满足。在上课之前,我都担心突破不了。

植树问题的教学设计9

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)

  二、探究规律,解决问题。

  1、找出两端都种树的规律

  植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的'小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,

  棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。

  3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

植树问题的教学设计10

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、透过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、透过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:课件

  教学过程:

  一、创设原型

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一起来看一下这几位同学画的图,你能说说你是怎样画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的'。)

  (3)透过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树,透过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数间隔数67

  (板书:棵数-1=间隔数间隔数+1=棵数)

  师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一起来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)谁能大声清楚朗读这个题目?

  (2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?

  (4)展示学生线段图,你能说说你是怎样画的吗?

  (5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ①出示学生各种答案,板书在黑板上。

  ②对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2)和刚才这题比较,你想说什么?

  (3)学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利透过检查!你们还想理解新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

植树问题的教学设计11

  教学分析:

  “植树问题”是人教版五年级上册数学广角中的一个教学内容,解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可能有不同的情形,例如,两端都要栽,只在一端栽另一端不栽,或是两端都不栽。?

  例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据教材的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。

  学生分析:

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的'。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中点对教材进行适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数1=棵数,棵数-1=间距数

  教学准备:

  课件10厘米15厘米20厘米的纸条三根,小棒20根。

  教学过程:

  一、设计情境,引入新课。

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  树木不仅美化环境,还能净化空气。在一条直线上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、自主探究,找出规律。

  1、出示例题,引出问题。

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  2、动手操作,发现规律。

  (1)师:长100米的小路,数字有点大,当我们遇到复杂问题的时候,可以换成一个简单的例子来进行,请同学们看要求。(课件出示要求)

  生活动,并思考:

  1、每条小路上的间隔数是多少?

  2、棵数是多少?

  3、间隔数和棵数之间是什么关系?

  小组同学互相交流自己的发现。

  师指导。

  (2)生汇报活动结果及自己的发现(实物投影展示)

  生初步得出结论:棵树比间隔数多1。

  3、师生小结,得到规律。

  师:老师把同学们的活动过程展示出来,并用线段图来表示我们的活动结果,请同学们看。

  从这个表格中,我们更可以容易看出,间隔数和棵数之间是什么关系?生回答师板书:

  间隔数=棵数-1棵数=间隔数1。

  4、回顾例题,解决问题。

  师:现在我们就用学到的知识来解决例1的问题。生独立解决,共同评价。

  三、巩固新知(课件出示):

  1、填一填。

  让生独立看要求,说说题目中有哪些数学信息,如何解决。

  2、园林工人沿着公路一侧植树,每隔6米栽一棵小树,一共栽了21棵。从第一棵到最后一棵的距离有多远?

  3、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  4、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  5、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

  四、师生共总结。

  这节课我们学到了什么知识,你有什么收获?

植树问题的教学设计12

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的`学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

植树问题的教学设计13

  课题

  植树问题(二)

  课时

  1

  班级

  四年级

  编写者

  林英

  一、教材内容分析

  人教版四年级下册第8单元书120页

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、使学生理解并掌握一个封闭图形的植树问题的规律。

  2、学会用不同的方法分析具体的数学问题。

  3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

  4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的'发散思维。

  三、学习者特征分析

  学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

  四、教学策略选择与设计

  自主探索合作交流总结规律

  五、教学环境及资源准备

  投影仪,每小组一副围棋。

  六、教学过程

  教学过程

  教师活动

  预设学生行为

  设计意图及资源准备

  一、创设情境

  教师投影出示教材第120页例3情境图。

  教师:图上两位小朋友在干什么?(下围棋)

  你对围棋有哪些了解?

  师:在这小小的围棋盘下可有不少数学问题呢!

  板书课题:植树问题(二)

  让学生畅所欲言。

  吸引学生的注意力,激发学生的学习兴趣。

  二、探究新知

  (1)教师投影出示围棋盘。

  师:在围棋盘上一个点可以放一个子。

  (2)出示例3。

  围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

  师:同学们算得都正确。还有其他的方法吗?

  师:你发现了什么?

  学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

  (1)学生读题,理解题意。

  (2)动手在围棋盘上摆一摆,数一数,小组合作探究。

  (3)学生汇报。

  通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

  三、反馈应用

  (1)教材第121页做一做第1题。

  教师投影出示情境画面,出示第1题。

  (2)教材第121页“做一做”第2题。

  ①讨论:可以怎么摆放?

  ②最少需要多少盆花?

  (3)教材第121页“做一做”第3题。

  学生读题,理解题意。

  学生汇报。

  学生在小组中合作完成,然后教师指名汇报,全班集体订正。

  四、全课小结

  通过今天的学习活动,你有什么收获?

  板书设计:植树问题(二)

  例3:

  a.19×2+17×2=72(个)

  (19+17)×2=72(个)

  b.18×4=72(个)

  c.17×4+4=72(个)

  封闭图形:植树棵数=间隔数

植树问题的教学设计14

  设计理念:

  笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。

  在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。

  教学目标:

  1、知识与能力目标:

  通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。

  2、过程与方法目标:

  使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、情感态度与价值观目标:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的`简单问题。

  教学重点:

  理解“两端都不种”的植树问题的规律

  教学难点:

  应用“两端不种”的植树方法去解决生活中类似的问题

  教学过程:

  一、创设情境,发现问题

  同学们学过植树的知识吗?请大家来帮忙解决下面这个问题

  房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?

  误区:60÷10=6(个)

  6+1=7(棵)

  两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题

  (设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)

  二、化繁为简,经历猜测、验证的过程探索规律

  师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别

  讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样

  师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?

  猜测:棵数=间隔数+1

  是不是这样呢,我们来验证一下(植树)

  两端不种

  棵数=间隔数+1

  (设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)

  二、深入学习应用“两端不栽”的规律

  1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?

  2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)

  ②师:同学们讨论一下解决这道题要注意什么?

  课件闪烁:将“两旁栽树”,“两端不用栽”

  学生展示:60÷3=20(个)

  20-1=19(棵)

  19×2=38(棵)

  答:一共要栽38棵树。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  (设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)

  三、回归生活,实际应用

  1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?

  20÷4=5(个)

  5—1=4(面)(面数=间隔数-1)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?

  4-1=3(层)(层数=楼数-1)

  3×26=78(级)

  (问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)

  3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)

  5-1=4(次)(次数=段数-1)

  4×8=32(分)

  (设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)

  四、全课总结

  通过今天的学习,你有哪些收获?

  (设计意图:让学生回顾本节知识达到及时巩固的作用)

  五、板书设计

  植树问题(两端不种)

  棵数=间隔数生活中

  间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、

  学生展示:60÷3=20(个)上楼:层数=楼数-1

  20-1=19(棵)锯树木:次数=段数-1

  19×2=38(棵)

  答:一共要栽38棵树。

  (设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)

植树问题的教学设计15

  教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

  通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的'分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

  教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

  一、创设情景,激发兴趣

  1、猜谜导入揭题

  师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

  师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

  数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

  二、经历探究,发现规律

  1、激趣引入,启发探究积极性

  (课件出示)出示江口小学为绿化环境的招聘启事及设计要求

  招聘启示

  学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

  江口小学

  20xx.6

  设计要求:

  在一条长20米的小路一边等距离植树,两端要栽。

  【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

【植树问题的教学设计】相关文章:

植树问题的教学设计09-27

《植树问题》教学设计05-21

【精华】《植树问题》教学设计15篇06-23

《植树问题》教案设计07-14

《植树问题》教学反思04-06

植树问题的教学反思03-13

植树问题教学反思04-02

五年级《植树问题》教学设计05-10

植树教学设计06-02