《正比例》教学设计

时间:2024-06-14 15:00:10 教学设计 我要投稿

《正比例》教学设计

  作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,借助教学设计可以更好地组织教学活动。那么你有了解过教学设计吗?以下是小编为大家收集的《正比例》教学设计,希望能够帮助到大家。

《正比例》教学设计

《正比例》教学设计1

  尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的'年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

《正比例》教学设计2

  教学内容:正比例

  教材分析:

  正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

  学情分析:

  学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

  教学目标:

  1.结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学重点:

  1、结合丰富的事例,认识正比例,理解正比例的意义。

  2、能根据正比例的`意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (二)情境二:

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  (三)情境三:

  1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

  说说从数据中发现了什么?

  3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (四)归纳正比例的意义

  1. 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  2. 购买苹果应付的钱数与质量有什么关系?

  3. 正方形的周长与边长有什么关系?

  4. 观察思考成正比例的量有什么特征?

  一个量变化,另一个量也随着变化,并且这两个量的比值相同。

  5. 小结

  两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

  二、巩固练习

  1. 想一想:

  正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁

  6

  7

  8

  9

  10

  11

  爸爸的年龄/岁

  32

  33





  (1) 把表填写完整。

  (2) 父子的年龄成正比例吗?为什么?

  (3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

  板书设计:

  正比例

  路程÷时间=速度(一定)

  总价÷数量=单价(一定)

  正方形的周长÷边长=4(一定)

  两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

《正比例》教学设计3

  教学目标

  (一)教学知识点

  1、认识正比例函数的意义。

  2、掌握正比例函数解析式特点。

  3、理解正比例函数图象性质及特点。

  4、能利用所学知识解决相关实际问题。

  教学重点

  1、理解正比例函数意义及解析式特点。

  2、掌握正比例函数图象的性质特点。

  3、能根据要求完成转化,解决问题。

  教学难点

  正比例函数图象性质特点的掌握。

  教学过程

  Ⅰ、提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥?鸟)套上标志环。4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

  1、这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2、这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3、这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

  类似于y=200x这种形式的函数在现实世界中还有很多。它们都具备什么样的特征呢?我们这节课就来学习。

  Ⅱ、导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1、圆的周长L随半径r的大小变化而变化。

  2、铁的密度为7.8g/cm3。铁块的质量m(g)随它的体积V(cm3)的大小变化而变化。

  3、每个练习本的厚度为0.5cm。一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

  4、冷冻一个0℃的物体,使它每分钟下降2℃。物体的温度T(℃)随冷冻时间t(分)的变化而变化。

  解:

  1、根据圆的周长公式可得:L=2r。

  2、依据密度公式p=可得:m=7.8V。

  3、据题意可知:h=0.5n。

  4、据题意可知:T=—2t。

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律。

  1、y=2x2、y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述。

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。

  活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1)。

  2、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2)。

  3、两个图象的共同点:都是经过原点的直线。

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限。

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较。

  1、y=x2、y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的.直线。函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线。当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx。

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理。

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象。

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  Ⅲ。随堂练习

  用你认为最简单的方法画出下列函数图象:

  1、y=x2、y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1、y= x(2,3)

  2、y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础。

  课后作业

  习题11.2─1、2题。

《正比例》教学设计4

  教学目标:

  通过具体问题认识成正比例、反比例的量。

  能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。

  能找出生活中成比例和成反比例量的实例,并进行交流。

  教学重点和难点:

  理解两个变量之间的函数关系

  教学准备

  小黑板投影片

  教学过程:

  本节课主要是对回顾与交流部分知识进行复习。

  一、生活中有哪些成正比例的量?有哪些成反比例的`量?小组同学互相举例说一说。

  ①可以让学生课前进行复习,并收集相关信息,课上展示。

  ②以小组形式展开交流、反思,然后组织汇报。

  ③展示部分学生的优秀作品。

  二、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)可以列表。

  (2)可以画图。

  (3)可以用式子表示。

  教材创设了路程和时间之间的关系,并运用表格、图、关系式、自然语言等方式来描述这一关系,使学生体会刻画数量之间的关系的多种形式,并促使学生在几种方式之间进行转化。教学时,教师可以再举出一些实际问题或鼓励学生提供出实际问题,让学生再次经历多种方式表示的过程;教师应通过语言、板书等形式将几种方式进行对应。

  三、举出生活中数学中一量虽另一量变化的例子。将学生的视野由正比例、反比例拓展到两个量之间的关系,这也体现了教材的特点,学生只要举出例子就行了,教师可以让学生说清楚谁随谁变化,对于感兴趣的学生,教师可以鼓励学生通过表格、兔等大致的刻画变量之间的关系。

《正比例》教学设计5

  教学目标

  (一)教学知识点

  1.认识正比例函数的意义.

  2.掌握正比例函数解析式特点.

  3.理解正比例函数图象性质及特点.

  4.能利用所学知识解决相关实际问题.

  教学重点

  1.理解正比例函数意义及解析式特点.

  2.掌握正比例函数图象的性质特点.

  3.能根据要求完成转化,解决问题.

  教学难点

  正比例函数图象性质特点的掌握.

  教学过程

  Ⅰ.提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥??鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.

  1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3.这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.

  类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.

  Ⅱ.导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1.圆的周长L随半径r的大小变化而变化.

  2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.

  3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.

  4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的'温度T(℃)随冷冻时间t(分)的变化而变化.

  解:1.根据圆的周长公式可得:L=2r.

  2.依据密度公式p=可得:m=7.8V.

  3.据题意可知:h=0.5n.

  4.据题意可知:T=—2t.

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数.

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.

  1.y=2x2.y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述.

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.

  活动过程与结论:

  1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1).

  2.y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2).

  3.两个图象的共同点:都是经过原点的直线.

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较.

  1.y=x2.y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象.

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.

  Ⅲ.随堂练习

  用你认为最简单的方法画出下列函数图象:

  1.y=x2.y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1.y= x(2,3)

  2.y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.课后作业

  习题11.2─1、2题.

《正比例》教学设计6

  教学目标

  1.使学生理解正比例的意义.

  2.能根据正比例的意义判断两种量是不是成正比例.

  3.培养学生的抽象概括能力和分析判断能力.

  教学重点

  使学生理解正比例的意义.

  教学难点

  引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的.数的比值一定,从而概括出正比例关系的概念.

  教学过程

  一、复习准备

  口答(课件演示:成正比例的量)

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、新授教学

  (一)导入新课

  这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

  (二)教学例1.(课件演示:成正比例的量)

  1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

  2.出示下表,并根据上述内容填表.

《正比例》教学设计7

  教材分析:

  正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用,数学教案-正比例应用题。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

  教学对象分析:

  成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的`实际问题进行判断,这是数学学习所特有的能力。

  教学目标:

  1、掌握用正比例的方法解答相关应用题;

  2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

  3、培养学生分析问题、解决问题的能力;

  4发展学生综合运用知识解决简单实际问题的能力。

  教学重点:掌握用正比例的方法解答应用题

  教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、谈话导入:

  1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

  2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

  刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

  二、新课教学:

  先来研究这样一个问题。

  1、出示例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1) 请一位同学读一读题目

  (2) 这道题要求什么?已知什么条件?

  (3) 能不能用以前学过的方法解答?

  (4) 让学生自己解答,边订正边板书:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激励引新

  这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  三、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1) 题目中相关联的两种量是________和________。

  (2) ________一定,_________和_________成_______比例关系。

  (3) ______行驶的_____ 和 _____的 ________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  (2) 明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1. 分析判断

  2. 找出列比例式所需的相等关系

  3. 设未知数列等式

  4. 求解

  5. 检验写答语

  四、练习提高

  1、基本练习

  (1)例题改编

  ① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

  ② 让学生解答改编后的应用题,集体订正。

  ③ 小结 :比较一下改编后的题和例1有什么联系和区别?

  例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  2、变式练习

  3、实践运用

  (1)数据:刚才我们上课时提到怎教材分析:

  正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

  教学对象分析:

  成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

  教学目标:

  1、掌握用正比例的方法解答相关应用题;

  2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

  3、培养学生分析问题、解决问题的能力;

  4发展学生综合运用知识解决简单实际问题的能力。

  教学重点:掌握用正比例的方法解答应用题

  教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、谈话导入:

  1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

  2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

  刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

  二、新课教学:

  先来研究这样一个问题。

  1、出示例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1) 请一位同学读一读题目

  (2) 这道题要求什么?已知什么条件?

  (3) 能不能用以前学过的方法解答?

  (4) 让学生自己解答,边订正边板书:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激励引新

  这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  三、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1) 题目中相关联的两种量是________和________。

  (2) ________一定,_________和_________成_______比例关系。

  (3) ______行驶的_____ 和 _____的 ________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  (2) 明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1. 分析判断

  2. 找出列比例式所需的相等关系

  3. 设未知数列等式

  4. 求解

  5. 检验写答语

  四、练习提高

  1、基本练习

  (1)例题改编

  ① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

  ② 让学生解答改编后的应用题,集体订正。

  ③ 小结 :比较一下改编后的题和例1有什么联系和区别?

  例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  2、变式练习

  3、实践运用

  (1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

  (2)能用这些数据编一道正比例应用题吗?

  (3)小组合作编题

  五、总结

  今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

  样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

  (2)能用这些数据编一道正比例应用题吗?

  (3)小组合作编题。

《正比例》教学设计8

  一、教学目标

  (一)知识与技能

  在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

  (二)过程与方法

  通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

  (三)情感态度和价值观

  主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

  【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

  二、教学重难点

  教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

  教学难点:利用正比例的关系列出含有未知数的等式。

  三、教学准备

  课件。

  四、教学过程

  (一)复习回顾

  1.说说正比例、反比例的相同点和不同点。

  2.判断下列每题中的两个量是不是成比例,成什么比例?

  (1)已知A÷B=C。

  当A一定时,B和C()比例;

  当B一定时,A和C()比例;

  当C一定时,A和B()比例。

  (2)购买课本的单价一定时,总价和数量的关系。

  (3)总路程一定时,速度和时间的关系。

  【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  (二)探究新知,培养能力

  1.提出问题。

  教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

  课件出示教材第61页例5。

  思考:题中告诉了我们哪些信息?要解决什么问题?

  教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  2.解决问题。

  (1)学生尝试解答。

  (2)交流解答方法,并说说自己的想法。

  教师:谁愿意来说一说你是怎么解决的?

  预设1:

  28÷8×10

  =3.5×10

  =35(元)

  (先算出每吨水的价钱,再算出10吨水需要多少钱)

  预设2:

  10÷8×28

  =1.25×28

  =35(元)

  (也可以先求出用水量的倍数关系,再求总价)

  教师:谁和这位同学的方法一样?

  【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  3.激励引新。

  教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  课件出示以下问题,让学生思考和讨论:

  (1)题目中相关联的.两种量是()和( ),说说变化情况。

  (2)()一定,()和()成()比例关系。

  (3)用关系式表示是()。

  (4)集体交流、反馈。

  板书:

  教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程)。

  学生独立完成,教师巡视。

  反馈学生解题情况。

  解:设李奶奶家上个月的水费是x元。

  28:8=x:10或()

  8x=28×10

  x=280÷8

  x=35

  答:李奶奶家上个月的水费是35元。

  (6)将答案代入到比例式中进行检验。

  教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

  (7)学生交流,汇报。

  【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

  4.变式练习。

  教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

  张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

  (1)比较一下此题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,请学生说一说是怎样想的。

  5.概括总结。

  教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

  学生讨论交流,汇报。

  (1)分析找出题目中相关联的两种量。

  (2)判断它们是否是正比例关系。

  (3)根据正比例的意义列出比例。

  (4)最后解比例。

  (5)检验作答。

  教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

  【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

  (三)巩固练习

  1.只列式不计算。

  (1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

  (189:3=x:9)

  (2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

  (x:3=6:4)

  2.用正比例解决问题。

  (1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

  (2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

  【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

  (四)课堂小结,拓展延伸

  同学们,谁来说说,上了这节课,你收获了什么?

  【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

《正比例》教学设计9

  教学内容:

  教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:

  理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

  学情分析

  1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

  2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

  多媒体运用:ppt课件

  教学过程:

  一、教学例1

  1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

  2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

  3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

  学生可能会从不同的角度去寻找规律。

  教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

  如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

  4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的.规律能不能用一个式子来表示?

  根据学生的回答,教师板书关系式:路程时间=速度(一定)

  5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  (板书:路程和时间成正比例)

  二、教学“试一试”

  1、要求学生根据表中的已知条件先把表格填写完整。

  2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

  3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  三、抽象表达正比例的意义

  1、引导学生观察上面的两个例子,说说它们有什么共同点。

  2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书关系式。

  四、巩固练习

  1、完成第63页的“练一练”。

  先让学生独立思考并作出判断,再要求说明判断理由。

  2、做练习十三第1~3题。

  第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

  第2题先让学生独立进行判断,再指名说判断的理由。

  第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

  五、全课小结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

《正比例》教学设计10

  教学内容

  教科书第54页例3,练习十二5,6,7题。

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的`?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

《正比例》教学设计11

  教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

  教学目标:

  1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

  教学重点:

  结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

  教学难点:

  能跟据正比例的意义判断两种相关联的量是否成正比例的量。

  教学准备:

  教学过程:

  一、导入

  谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

  学生讨论,反馈。

  [设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

  二、教学例1

  1、出示例1的表格。

  提问:表中列出了哪两种量?(板书:时间和路程)

  观察表中的数据,哪一种量的变化引起了另一种量的变化?

  指名回答。

  谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

  为什么说路程和时间是两种相关联的量?

  学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

  2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

  学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

  提问:你能用一个式子来表示上面的规律吗?

  根据学生回答,板书:=速度(一定)

  3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

  [设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

  三、教学“试一试”

  1、出示“试一试”,学生自由读题。

  2、让学生根据已知条件把表格填写完整。

  3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

  4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

  [设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

  四、归纳字母公式

  1、比较例题和“试一试”的相同点。

  提问:观察上面的两个例子,它们有什么相同的地方呢?

  (1)都有两种相关联的量;

  (2)两种相关联的量相对应的两个数的比值总是一定的;

  (3)两种量都成正比例。

  2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

  根据学生的回答,板书:=(一定)

  交流:和表示两种相关联的量,比的.比值一定,我们就说和成正比例。

  [设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

  五、巩固练习

  1、完成第63页“练一练”。

  学生独立思考并作出判断,要用完整的语言说出判断的理由。

  2、完成练习十三第1题。

  (1)让学生按题目要求先各自算一算、想一想。

  (2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

  3、完成练习十三第2题。

  (1)让学生独立判断,并指名说说判断的理由。

  (2)注意引导学生有条理地说明判断的思考过程。

  4、完成练习十三第3题。

  (1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

  (2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

  (3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  [设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

  六、全课总结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

  [设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

  七、作业

  完成《练习与测试》相关作业。

  板书设计

  正比例的意义

  时间和路程路程和时间是两种相关联的量。

  =80=80=80……

  =速度(一定)

  =(一定)

《正比例》教学设计12

  教学目标

  1、使学生理解正比例的意义、

  2、能根据正比例的意义判断两种量是不是成正比例、

  3、培养学生的抽象概括能力和分析判断能力、

  教学重点

  使学生理解正比例的意义、

  教学难点

  引导学生通过观察、思考发现两种相关联的量的`变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念、

  教学过程

  一、复习准备

  口答(课件演示:成正比例的量)

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、新授教学

  (一)导入新课

  这些都是我们已经学过的常见的数量关系、这节课,我们继续研究这些数量关系中的一些特征、

  (二)教学例1、(课件演示:成正比例的量)

  1、一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

  2、出示下表,并根据上述内容填表、

《正比例》教学设计13

  教学目标

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  教学重难点

  重点:成正比例的量的特征及其断方法。

  难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  教学过程

  一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后

  师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。

  (板书:正比例)

  二、引导探索,学习新知

  1、教学

  例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的`量。

  师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?

  学生自学并在组内交流。

  全班交流。

  (2)认识相关联的量。

  明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。

  学生计算后:===…=3.5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?

  预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的。两个数的比值一定,这是关键。

  4、认识正比例图象。

  (课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?

  生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。

  设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

《正比例》教学设计14

  教学内容:

  教科书第59页例5以及相关练习题。

  教学目标:

  1、使学生能正确判断题中涉及的量是否成正比例关系。

  2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

  3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

  4、在成功解决生活中的实际问题中体会数学的价值。

  教学重点:

  利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

  教学难点:

  正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

  教具准备:

  小黑板

  教学过程:

  一、复习铺垫,激发兴趣。

  1、填空并说明理由。

  (1)速度一定,路程和时间成( )比例。

  (2)单价一定,总价与数量成( )比例。

  (3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

  【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

  3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

  生1:把旗杆放下量。

  生2:爬上去量。

  生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

  师:相信通过这一节课的学习,你一定会找到解决的方法的。

  【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

  二、揭示课题、探索新知。

  1、小黑板出示例5

  张大妈:我们家上个月用了8吨水,水费是12.8元。

  李奶奶:我们家用了10吨水,上个月的水费是多少钱?

  思考:题中告诉了我们哪些信息?要解决什么问题?

  师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  (1) 学生自己解答。

  (2) 交流解答方法,并说说自己想法。

  算式是:12.8÷8×10

  =1.6×10

  =16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

  (也可以先求出用水量的倍数关系再求总价。)

  10÷8×12.8

  =1.25×12.8

  =16(元)

  【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

  师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  (3)小黑板出示以下问题让学生思考和讨论:

  1)题目中相关联的两种量是( )和( ) ,说说变化情况。

  2)( )一定,( )和( )成( )比例关系。

  3)用关系式表示是( )

  (4)集体交流、反馈

  板书: 水费 用水吨数

  12.8元 8吨

  ?元 10吨

  水费:用水吨数 = 每吨水的价钱(一定)

  师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程):

  学生独立完成,教师巡视。

  反馈学生解题情况。

  8

  12.8

  10

  χ

  解:设李奶奶家上个月的水费是χ元。

  12.8 :8 =χ:10 或 =

  8χ=12.8×10 8χ= 12.8×10

  χ=128÷8 χ=128÷8

  χ= 16 χ= 16

  答:李奶奶家上个月的水费是16元。

  【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

  (6)将答案代入到比例式中进行检验。

  你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  生交流,汇报。

  2、变式练习。

  刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

  张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  (1)比较一下改编后的题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,学生说一说你是怎么想的?

  3、概括总结

  师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的.思考过程是怎样的?

  学生讨论交流,汇报。

  师总结:

  1、分析找出题目中相关联的两种量。

  2、判断他们是否是正比例关系。

  3、根据正比例的意义列出比例。

  4、最后解比例。

  5、检验作答。

  【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

  三、巩固练习,形成技能。

  1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

  师提醒:同一时间、同一地点的身高和影长成正比例。

  学生读题后,先思考以下三个问题。

  ① 题中已知哪两种相关联的量?

  ②它们成什么比例关系?你是根据什么判断的?

  ② 你能列出等式吗?

  生独立完成,并汇报解答过程。

  2、教科书P60“做一做”。

  生独立解答。

  【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

  四、全课总结

  通过今天的学习,你有什么收获?

  五、布置作业

  练习九第3、5题。

  板书设计:

  用比例解决问题

  水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

  12.8元 8吨

  ?元 10吨 12.8 :8 =χ:10

  8χ= 12.8×10

  水费:用水吨数 = 每吨水的价钱(一定)

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元

《正比例》教学设计15

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

  教学目标:

  ⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:进一步理解比和比例的一些知识。

  教学难点:感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、自主学习,完成练习。

  ⑴揭示课题。

  教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

  ⑵自主练习。

  教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

  学生自主练习,教师巡视。

  二、交流讨论,梳理知识。

  ⑴整理比的知识。

  交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

  ⑵感受生活中的比例。

  交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的'比例。

  ⑶整理比例的知识。

  交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

  ⑷整理解比例的知识。

  交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

  ⑸解决实际问题。

  交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

  ⑹谈谈本节课的收获。

【《正比例》教学设计】相关文章:

正比例教学设计05-11

正比例教学设计05-19

正比例函数教学设计01-17

《正比例的意义》说课稿12-03

教学设计模板-教学设计模板07-14

流程设计教学设计12-09

教学设计01-14

《春望》教学设计 教案教学设计02-17

分数的意义教学设计 分数的意义教学设计06-11