《正比例》教学设计

时间:2025-10-05 12:27:00 教学设计 我要投稿

《正比例》教学设计

  作为一名专为他人授业解惑的人民教师,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么教学设计应该怎么写才合适呢?下面是小编整理的《正比例》教学设计,希望能够帮助到大家。

《正比例》教学设计

《正比例》教学设计1

  教学目标:

  1、知识与技能

  经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。

  2、过程与方法

  通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

  3、情感态度与价值观

  在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:

  一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)

  师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?

  师:你在唱得时候有什么规律吗?

  生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。

  师:你真聪明,会横着观察观察表格。

  生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。

  师:很好,你是竖着观察表格的。

  师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。

  看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。

  (学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)

  二、自主建构正比例的量

  (一)初步感受成正比例量的变化规律

  看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)

  1、学生独立填表。

  2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。

  3、反馈交流

  4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定

  (二)在比较中继续感受成正比例量的变化规律

  看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。

  1、出示材料:

  下面是边长与周长,边长与面积的变化情况,把表填写完整。

  2、四人小组活动:

  思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例

  除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的`变化情况,你想看吗? 指导看图,说说你发现了什么?

  师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)

  揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:

  (三)尝试归纳正比例的意义

  1、出示:

  像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。

  2、你觉得这里哪几个词比较重要?

  3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说

  三、运用提高

  1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?

  2、在《数青蛙》儿歌中找找成正比例的量。

  四、小结提升:

  通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?

  刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的眼光去观察,发现生活中成正比例的量,下一节课我们一起交流

  板书设计:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)

  《正比例》教学反思

  对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。

  还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。

  教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。

  那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。

《正比例》教学设计2

  教学内容:

  九年义务教育六年制小学数学第十二册P63——64

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:

  能认识正比例关系的图像。

  教学难点:

  利用正比例关系的图像解决实际问题。

  设计理念:

  数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的.数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

  教学步骤教师活动学生活动

  一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

  ◎数量一定,总价和单价

  ◎和一定,一个加数和另一个加数

  ◎比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  学生口答

  想象猜测

  二、探究新知1、出示例1的表格(略)

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  学生到黑板上示范

  互相评价纠错

  学生讨论

  说说是怎样想的

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。

  要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  独立完成,集体评讲

  想一想,说一说

  画一画,议一议

  学生设计,交换检查并相互评价

  四、评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

《正比例》教学设计3

  导学目标

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  导学重点:成正比例的量的特征及其判断方法。

  导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

  预习学案

  填空

  1、如果路程时间=()(一定),那么()和()成正比例。

  2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。

  3、如果yx=k(一定),那么()和()成正比例。

  导学案

  学习例1

  在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。

  高度24681012

  体积50100150200250300

  底面积

  体积和高度有什么变化?观察他们的比值,你发现了什么?

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  yx=k(一定)

  想一想,生活中还有哪些成正比例的量?

  小组讨论交流。

  看书P40例2。

  (1)题中有几种量?哪两种量是相关联的量?

  (2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

  (3)它们的数量关系式是什么?

  (4)从图中你发现了什么?

  (5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的'体积是多少?225立方厘米的水有多高?

  三、课堂小结:

  什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

  课堂检测

  下列各题中的两种相关联的量是否成正比例关系,并说明理由。

  1、正方体的棱长和体积

  2、汽车每千米的耗油量一定,耗油总量和所行千米数。

  3、圆的周长和直径。

  4、生产800个零件,已生产个数和剩余个数。

  5、全班的人数一定,一、二组的人数和与其他组的人数和。

  6、和一定,加数与另一个加数。

  7、小苗牌2B铅笔的总价和购买枝数。

  8、出油率一定,所榨出的油的重量和大豆的重量。

  课后拓展

  从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?

  板书设计

  成正比例的量

  高度/cm24681012

  体积/cm350100150200250300

  底面积/cm2

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  正比例表达式:yx=y(一定)

《正比例》教学设计4

  教学目标

  (一)教学知识点

  1.认识正比例函数的意义.

  2.掌握正比例函数解析式特点.

  3.理解正比例函数图象性质及特点.

  4.能利用所学知识解决相关实际问题.

  教学重点

  1.理解正比例函数意义及解析式特点.

  2.掌握正比例函数图象的性质特点.

  3.能根据要求完成转化,解决问题.

  教学难点

  正比例函数图象性质特点的掌握.

  教学过程

  Ⅰ.提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥??鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.

  1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3.这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.

  类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.

  Ⅱ.导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1.圆的周长L随半径r的大小变化而变化.

  2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.

  3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.

  4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.

  解:1.根据圆的周长公式可得:L=2r.

  2.依据密度公式p=可得:m=7.8V.

  3.据题意可知:h=0.5n.

  4.据题意可知:T=—2t.

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数.

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.

  1.y=2x2.y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述.

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.

  活动过程与结论:

  1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1).

  2.y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2).

  3.两个图象的共同点:都是经过原点的直线.

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较.

  1.y=x2.y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的.关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象.

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.

  Ⅲ.随堂练习

  用你认为最简单的方法画出下列函数图象:

  1.y=x2.y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1.y= x(2,3)

  2.y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.课后作业

  习题11.2─1、2题.

《正比例》教学设计5

  一、教学目标

  (1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。

  (2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;

  (3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。

  二、教学的重点和难点

  教学重点:正比例函数的性质及其应用。

  教学难点:发现正比例函数的性质

  三、教学方法与学法指导教学方法:

  引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。

  学法指导:引导学生学会观察、归纳的学习方法。

  四、教具准备

  电脑PPT,洋葱学院电脑版

  五、教学过程:

  (一)温故知新,引入课题

  温故:正比例函数的图像是什么?

  答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线

  (二):知新:

  在两个直角坐标系内,分别画出下列每组函数的图象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x

  引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?

  观察图像,思考问题:

  1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?

  2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。

  3.你从中得出什么规律?

  第一个问题:图像经过的象限与k的取值有何联系?

  估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。

  师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致

  估计生:第一组k>0,而第二组k<0。

  师:很好,谁能把他们联系一下?

  估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录xx这个网址,进行演示,让学生更加直观的观察到k的正负对函数图象的影响)

  下面由老师来证明这个性质:(由观察猜想到逻辑证明)

  板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  证明:当k>0时,若x>0,则kx>0,即y>0∴点(x,y)在第一象限

  若x<0,则kx<0,即y<0∴点(x,y)在第三象限

  当x=0时,则kx=0,即y=0∴点(x,y)即原点。

  即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k<0时,亦可证明函数图像经过二、四象限。

  我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。

  PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  师:现在我们做个小练习,由正比例函数解析式(根据k的正负),来判断其函数图像的走向。

  y=-xy=xy=xy=-xy=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

  鼓励学生踊跃抢答。

  反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。

  板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)

  师:小练习:由函数解析式,请你说出它的变化情况:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

  鼓励学生踊跃抢答。

  第三个问题:你从中得出什么规律?

  归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:

  当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)

  当k<0时,函数图像经过第二、四象限;自变量x逐渐增大时,函数值y反而减小。(也就是“捺”的走向)

  归纳为一句话,正比例函数图象的性质归根结底看k的符号。

  即:k>0提(一、三,增大);

  k<0捺(二、四,减小)

  (三)应用

  1、正比例函数的解析式是___________,它的图像一定经过___________。

  2、y=-的图像经过第___________象限。

  3、已知ab<0,则函数y=x的图象经过___________象限。

  4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。

  5、当m为何值时,y=mxm2-3是正比例函数,且y随x的'增大而增大。

  思考题:

  ①已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。

  ②分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?

  a、y=(m2+1)x

  b、y=m2x

  c、y=(m+1)x

  (四)小结这节课让我们知道了……

  以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。

  (五)作业89页练习题

  (六)课后反思

  1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了统一。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。

  2.不足之处:

  (1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。

  (2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。

  (3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。

  3、改进措施:

  (1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。

  (2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。

  (3)在性质的发现总结过程中,应让学生自己独立完成,教师不必着急帮助总结,这样可以更加集中学生的注意力,激发学习兴趣。

  在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。

《正比例》教学设计6

  教学目标:

  1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1.怎样两个量成正比例?

  2.完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1 1.课件出示例1的表

  ⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的.?

  ⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3.我们可以写出这么几组路程和对应时间的比。

  ⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  ⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  ⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  ⑷现在你能完整地说一说表中路程和时间成什么关系吗?

  4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

  ⑴课件出示"试一试"

  ⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  ⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

  集体交流:

  ⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  ⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  ⑹你能完整地这样说给你的同桌听一听吗?

  ⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

  课件出示课题。

  ⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5.完成"练一练"

  ⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  ⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1.完成练习十三第1题。

  请大家继续看课本66页第1题

  2.完成练习十三第2题

  ⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  ⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

  3.完成练习十三第3题(课件出示题目)

  ⑴课件出示放大后的三个正方形、

  ⑵大家看一看,你是这样画的吗?

  ⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  ⑷请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,

  时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

  我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

《正比例》教学设计7

  教学内容

  教科书第54页例3,练习十二5,6,7题。

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的`钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

《正比例》教学设计8

  教学内容:

  教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:

  理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

  学情分析

  1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

  2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

  多媒体运用:ppt课件

  教学过程:

  一、教学例1

  1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

  2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

  3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

  学生可能会从不同的角度去寻找规律。

  教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

  如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

  4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

  根据学生的回答,教师板书关系式:路程时间=速度(一定)

  5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  (板书:路程和时间成正比例)

  二、教学“试一试”

  1、要求学生根据表中的'已知条件先把表格填写完整。

  2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

  3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  三、抽象表达正比例的意义

  1、引导学生观察上面的两个例子,说说它们有什么共同点。

  2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书关系式。

  四、巩固练习

  1、完成第63页的“练一练”。

  先让学生独立思考并作出判断,再要求说明判断理由。

  2、做练习十三第1~3题。

  第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

  第2题先让学生独立进行判断,再指名说判断的理由。

  第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

  五、全课小结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

《正比例》教学设计9

  教学内容:

  九年义务教育六年制小学数学第十二册P62——63

  教学目

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:认识正比例的意义

  教学难点:掌握成正比例量的变化规律及其特征

  设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的`几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

《正比例》教学设计10

  教学目标:

  1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3.结合丰富的事例,认识正比例。

  教学重点:

  1、结合丰富的事例,认识正比例。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时

  第一课时

  教学过程:

  一、课前预习

  1、填好书中所有的表格

  2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

  3、把不理解的内容用笔作重点记号,待课上质疑解答

  二、展示与交流

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  说说你发现的规律。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5、正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?

  6、观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  在老师的小结中感受并总结正比例关系的特征

  一、反馈与检测

  1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:

  数量(米) 7

  总价(元)

  9.519

  28.5

  47.5

  66.5

  1.表中有()和()两种量。

  2.任意写出三个相对应的总价和数量的比,并算出它们的比值。 3、在这道题里,花布的()一定,()和()成正比例。 自己读题,并试着填一填.指名汇报.二、回答问题

  1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。

  平行四边形的面积

  218 430

  平行四边形的高

  默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长

  (4)火车行驶的时间和路程。

  (5)火车的速度一定,行驶的时间和路程。

  4、能力培养

  把一定数量的'钱放到银行存活期,存款的年限和所得的利息是不是成正比例?

  5、找一找生活成正比例的

  板书设计: 正比例 X=ky(k一定)

  2.正比例和反比例

  第二课时

  教学目标:

  使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。教学过程:

  一、复习导入 1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  二、新课讲授

  1.教学例1

  教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)

  小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  三、归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:

  (一定)5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  四、课堂小结:

  通过这节课的学习,你有什么收获?

  五、课后作业

  完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。

  六、板书设计

  第1课时

  正比例 =速度(一定)=单价(一定)=工作效率(一定)

  (一定)

  成正比例的量的三要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

《正比例》教学设计11

  教学资料:

  北师大版小学数学六年级下册《正比例》

  教学目标:

  1、结合丰富的事例,认识正比例。

  2、掌握成正比例变化的量的变化规律及其特征。

  3、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学重点:

  认识正比例的好处和怎样决定两个变化的量是不是成正比例。

  教学难点:

  决定两个变化的量是不是成正比例。

  教具准备:

  课件

  教学过程:

  一、导入新课:

  出示:路程、单价、正方形的边长……

  根据上面的某个量,你能想到些量?为什么?

  在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。

  二、新课探究:

  (一)、活动一:初步感受正比例关系。

  1、课件出示正方形周长与边长、面积与边长的变化状况:

  (1)请把表格填写完整。

  (2)观察表格,你能发现什么规律?

  (群众填表后,独立观察,发现规律,

  2、组织学生交流发现的规律,引导学生比较两个规律的异同点。

  3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。

  所以两个相互依靠的变量之间的关系是不一样的。

  (二)、活动二:结合实例体会正比例的好处:

  1、课件出示:

  (1)将表格填完整。

  (2)从表格中你能发现什么规律?

  (以小组为单位,选取一个情境进行研究。)

  2、交流汇报:

  (三)、活动三:揭示正比例的好处。

  1、这2规律有什么共同点?

  教师随着学生的回答板书:

  都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。

  2、教师揭示正比例的含义。

  像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)

  3、结合实例说明:

  表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。

  学生说一说表二的两个量。

  4、用字母表示出正比例关系。

  如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?

  (四)、活动四:决定两个量是不是成正比例的量。

  1、出示活动一中的表格:

  正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?

  学生自主决定后交流。

  2、看来决定两个量是否成正比例务必具备几个条件?

  强调:只有具备两个条件,我们才能说这两个量成正比例。

  三、课堂练习:

  1、根据下表中的数据,决定表中的两个量是不是成正比例:

  平行四边形的面积/cm2

  6

  12

  18

  24

  30

  平行四边形的高/cm

  1

  2

  3

  4

  5

  买邮票的枚数/枚

  1

  2

  3

  4

  5

  所付的钱数/元

  0.8

  1.6

  2.4

  3.2

  4.0

  2、小明和爸爸的年龄变化状况如下:

  小明的年龄/岁

  6

  7

  8

  9

  10

  11

  爸爸的年龄/岁

  32

  33

  (1)把表格填写完整。

  (2)父子的年龄成正比例吗?为什么?

  3、决定下面各题中的两个量是否成正比例,并说明理由。

  (1)每袋大米的质量必须,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长和长。

  (4)圆的周长和直径。

  (5)圆的面积和半径。

  四、课堂总结:

  透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。

  板书设计:

  正比例

  一个量随着另一个量的变化而变化

  两个量的比值是不变

  x=ky(k必须)

  教学反思:

  1.课堂流程的设计,延展了探究空间。

  本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的`概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。

  2.数学材料的呈现,丰富了体验途径。

  为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。

  3.学习方式的选取,促进了深度感悟。

  教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。

《正比例》教学设计12

  教学目的:

  1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。

  2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。

  教具、学具准备:

  教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。

  教学过程:

  一、复习准备

  1、什么是比例?

  2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。

  时间(时)27

  路程(千米)180630

  二、导入新课

  教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。

  三、进行新课

  用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。

  时间(时)

  路程(千米)

  教师:先独立思考后再讨论、交流、回答以下问题

  (1)表中有哪两种量?

  (2)这两种量是怎样变化的?

  (3)还能够从表中发现哪些规律?

  教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。

  板书:相关联。

  教师:你们还发现哪些规律呢?

  引导学生归纳出:

  (1)时间和路程是相关联的两种量,路程随着时间的变化而变化;

  (2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;

  (3)路程和时间的比值都是90;时间和路程的比值都是1/90。

  路程和时间的比值是什么?(速度)

  在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)

  数量(米)1234567…

  总价(元)8.216.424.632.841.049.257.4…

  先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。

  学生分析后引导学生归纳:

  (1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;

  (2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;

  (3)总价和数量的比值是必须的,每米布的'单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。

  教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。

  教师:请同学们相互说一说生活中还有哪些是成正比例的量?

  指导学生完成第56页“做一做”。

  四、巩固练习

  指导学生完成练习十六第1~3题。

  五、课堂小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

  学生小结后教师对全课所学的知识进行归纳。

  创意作业

  小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。

《正比例》教学设计13

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的'题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

《正比例》教学设计14

  教学目标

  (一)教学知识点

  1、认识正比例函数的意义。

  2、掌握正比例函数解析式特点。

  3、理解正比例函数图象性质及特点。

  4、能利用所学知识解决相关实际问题。

  教学重点

  1、理解正比例函数意义及解析式特点。

  2、掌握正比例函数图象的性质特点。

  3、能根据要求完成转化,解决问题。

  教学难点

  正比例函数图象性质特点的掌握。

  教学过程

  Ⅰ、提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥?鸟)套上标志环。4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

  1、这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2、这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3、这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

  类似于y=200x这种形式的函数在现实世界中还有很多。它们都具备什么样的特征呢?我们这节课就来学习。

  Ⅱ、导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1、圆的周长L随半径r的大小变化而变化。

  2、铁的密度为7.8g/cm3。铁块的质量m(g)随它的体积V(cm3)的大小变化而变化。

  3、每个练习本的厚度为0.5cm。一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

  4、冷冻一个0℃的物体,使它每分钟下降2℃。物体的温度T(℃)随冷冻时间t(分)的变化而变化。

  解:

  1、根据圆的周长公式可得:L=2r。

  2、依据密度公式p=可得:m=7.8V。

  3、据题意可知:h=0.5n。

  4、据题意可知:T=—2t。

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律。

  1、y=2x2、y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述。

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的`探究过程,并能准确地表达出,从而加深对规律的理解与认识。

  活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1)。

  2、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2)。

  3、两个图象的共同点:都是经过原点的直线。

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限。

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较。

  1、y=x2、y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线。当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx。

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理。

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象。

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  Ⅲ。随堂练习

  用你认为最简单的方法画出下列函数图象:

  1、y=x2、y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1、y= x(2,3)

  2、y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础。

  课后作业

  习题11.2─1、2题。

《正比例》教学设计15

  尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的`概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

【《正比例》教学设计】相关文章:

正比例教学设计05-19

《正比例》教学设计06-14

正比例教学设计10-26

正比例函数教学设计05-31

必备正比例教学设计08-18

正比例教学设计精品(4篇)06-22

《正比例的意义》说课稿08-21

教学设计的设计07-17

教学设计模板-教学设计模板09-03

流程设计教学设计10-18