【热门】数学说课稿范文集合5篇
作为一名人民教师,通常需要准备好一份说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。快来参考说课稿是怎么写的吧!下面是小编为大家整理的数学说课稿5篇,希望能够帮助到大家。
数学说课稿 篇1
一、说教材
1、教学内容:
义务教育课程标准北师大版实验教科书数学二年级下册第七单元“认识图形”的第一课时“认识角”。
2、教材分析:
在生活中,许多物体中存在着“角”,学生对它也是相当熟悉,我在课前也了解过,他们的认识大多停留在“一个物体的边沿,或是转角的地方,就是角。”而这些就是学生已有的知识经验,也是本课的学习起点,正确选择学生的学习起点,对于数学学习将产生积极的影响:一方面能够培养学生主动的学习态度;另一方面,也有利于培养学生形成以交流与研究为特征的学习方式。
3、教学目标:
①结合生活情境,认识到生活中处处有角,体会数学与生活的联系。
②通过“找一找”“折一折”“比一比”等活动,直观认识角。
③培养学生动手操作能力。
4、教学重点与难点:
通过动手实践直观认识角。
二、说教法
《数学课程标准》明确指出:“数学学习是数学活动的教学,是师生之间,学生之间交往互动与共同发展的过程”。教师的教与学生的学是一个有机的整体,不可分割的。教师的教需要通过学生的学来体现,而学生的学则是需要教师引导的。本课我一改传统式的教学方式,把获取新知的过程交给学生自己,本节课的设计体现了以学生活动为主线的思路,注意为学生提供“做”数学的机会,让学生在学习过程中去体验数学和经历数学。根据优化课堂教学的需要对教材进行适当的加工处理,根据教学要求,从学生的实际出发,按照学生的年龄特点,认知规律,创设学生熟悉的教学情境,鼓励每个学生动手、动口、动脑,积极参与数学的学习过程。在整个过程中,我注意发挥学生的主体性,给学生留下充分的时间和空间。整个教学过程大致可以分为"提出问题——探索问题——问题解决"三个阶段。问题解决的过程,正是学生们态度、情感、价值观及学习能力全面发展的'过程,更能激发学生的学习热情,充分发挥学生的聪明才智,开拓他们的创造性思维,从而体现生本的理念“先做后学”,达到“教少学多”、“无为而为”的教学效果。
三、说学法
苏霍姆林斯基认为:教学就是给学生能借助自己已有的知识去获取新知的能力,并能成为一种思索活动。当代新知识、新技术的发展一日千里,学生掌握了正确的学习方法,就能闻一知十,触类旁通,终生受益,达到“教是为了最终的不教”的目的。因此,本课时主要进行指导学生运用迁移的方法学习新知。如:我先让在情景图中找角,说生活中所见到的角,再在课桌上找角,最后,根据学生的汇报共同在黑板上画出角。并在以后的练习中加深角理解,完成了本节课的学习任务。
四、说教学程序:
本节课我一共设计了七个教学环节:一是了解学生的学习起点,激趣引入;二是从实物中抽象角,丰富学生的感知;三是共同观察讨论,建立角的正确表象;四是寻找生活中的角,巩固对角的认识;五是动手做角,加深对角的认识与理解;六是比较角的大小、发展学生的思维;七是设计综合练习、提升学生能力。
(一)了解学生的学习起点,激趣引入。
课始,通过“摸一摸、猜一猜、看一看”的活动,直观感知“角”。
这个活动学生喜欢,既能唤起他们已有的知识经验,又能激起他们参与学习的热情与积极性,为学生的继续学习搭起了现实生活与抽象数学的桥梁。
(二)从实物中抽象角,丰富学生的感知。
本课的主要目标之一,就是引导学生把“生活经验中的角”逐步提升为“数学上的角”。因此,在唤起学生已有经验的基础上,通过动态的过程把这些角抽象出来,学生通过仔细观察,感知数学上的“角”的形象。
而这些“数学上的角”跟学生“经验中的角”存在一定的差异,也会在他们的心理产生一种认知上的冲突,也正是这种冲突将激励着学生以更高的热情投入到比较与发现中。
(三)共同观察讨论,建立角的正确表象。
通过刚才的一系列活动,学生已经建立了角的初步形象,接着我们安排了及时的观察、对比与发现,组织学生讨论:“这些角有什么共同的地方?”引导学生得出角各部分的名称,顶点、边。逐步引导学生在头脑中建立角的完整表象,有一个顶点和两条边。
然后及时设计“判断”练习,通过辩认与说理,再次加深对角的本质特征的认识,通过多种方式的参与体验,引导学生深化对角的本质特征的认识。
(四)寻找生活中的角,巩固对角的认识。
由于学生已经形成了角的正确表象,为了加深对角的特点的认识,我们又安排了“找一找、摸一摸、说一说”的体验活动,让他们在身边寻找角,并通过同桌互相指一指、摸一摸的活动过程,既能加深对角的特征的认识,还能让学生把学到的数学知识运用到生活实际中,体验到数学与生活密切联系性,在全班交流的过程中,学生不仅能够再次加深对角的本质特征的认识,也能及时对某些错误的认识进行纠正与弥补。
(五)动手做角,加深对角的认识与理解。
“动手做一个角”是本课浓墨重彩的部分,这里,提供给学生好多的材料,学生可以借助这些材料做出角,学生展开活动时,老师参与学生中间,即时采集有用信息,为教学服务。有的学生用一种材料不止做出了一个角,教师及时表扬鼓励,这个过程也是学生思维层次的展示天地,也看到了孩子们多向思维的火花在课堂中不断地闪现。
(六)比较角的大小、发展学生的思维。
在学生初步感知了角有大有小的基础上,设计了“比较角的大小”的环节,这里注重让学生用自己的方法与语言来描述比较的方法,教师通过有效的引导与小结,将学生的方法加以及时提升,同时培养了他们的思维能力与水平。从教学的情况来看,孩子们的比较方法很多,也很有创意,从中也可以发现学生思维的开放性与层次性。
(七)设计综合练习、提升学生能力。
经过多样性的活动过程,学生积累了对角的正确认识,最后,我们设计了三个层次的综合练习,意在引发学生的思维向更高层次迈进,这三个层次的练习,学生的思维得到了碰撞,思维的水平也得到了提升。 整课的设计,通过联系学生的生活经验和活动经验,引导学生主动参与、经历知识的形成和探究过程。注重为学生创设自主探索的空间,学生通过“摸一摸、找一找、指一指、做一做、比一比”的活动过程,在多种感官协调参与下初步认识角。倡导独立思考与合作探究相结合的学习方式,学生通过多种形式的展示与交流,体会到解决问题策略的多样性,既发展了求异思维,又在交流中深化了各自的认识。
数学说课稿 篇2
一、说教材:
1、教学内容:
本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容《圆的认识》,主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等。
2、教材简析:
圆是一种常见的平面图形,也是最简单的曲线图形。学生已经对圆有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生独立完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。
3、教学目标:
(1)使学生认识圆,知道圆的各部分名称。
(2)使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
(3)使学生通过观察、实验、猜想等数学活动过程认识圆,进一步发展空间观念和初步的探索能力。
(4)、教学重点:使学生认识圆,掌握圆的特征。
(5)、教学难点:会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
(6)、学情分析:
在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;对于乡镇学生,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。
二、说教法学法:
学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发学习热情,让学生在经历、体验和运用中真正感悟知识。在动手中引导学生认识圆,理解圆的特征,有目的、有意识地安排了让学生折一折、画一画、量一量、比一比等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用心去辨析同学们的答案。
教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。
本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。
三、说教学过程:
(一)情景导入
谈话导入,说说生活中在哪儿见过圆?(圆形钟面、硬币、光碟、圆形桌面车轮、…)。见过平静的水面吗?如果我们从上面往下丢进一颗小石子(配上石子入水的声音,并播放水纹),你发现了什么?出示大自然中的各种景象,让学生从中找一找圆,感受圆在大自然中的重要性,再利用身边的物体或工具,自己动手画一个圆。
(二)动手实践,发现新知
(1)找圆心、认识半径、直径
首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”通过自学课本让学生自己去了解它们的名称和特征。让学生积极主动地参与知识的形成过程。
我这样设计意在于让生从动手操作,观察比较中知道折痕的交点叫圆心,连接圆心和圆上的线段叫半径,过圆心并且两端都在圆上的线段叫直径。
(2)研究圆的直径半径的特征以及相互关系。
我想让学生画几条直径和半径,并让学生量一量,比一比,把自己的发现先在组内交流再大组汇报,学生汇报时让学生想一想是不是所有的直径都相等任何直径都是半径的2倍呢能举例说明吗。我出示两张大小完全不同的圆形纸片,问:“这两个圆的半径相等吗?”学生恍然大悟,必须加上“在同一个圆内”这个前提。从而更深刻地理解了圆的特征,起到了水到渠成的作用。接着让学生用字母表示出同一个圆内直径与半径的关系。我这样设计意在于让生学生通过动手、测量、观察、比较等活动,让学生知道在同圆或等圆中,所有的直径都相等,所有的半径都相等,直径是半径的2倍。
(3)学习画圆方法
在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。学生可能会想到借助圆形物体画圆,用绕线钉子画圆,还有用圆规画圆等等。最后我会让学生自学画圆的方法,通过学生的汇报,我引导他们归纳出画圆的一般步骤:
第一、定点(也就是定圆心的位置),
第二、定长(也就是定半径的长度),
第三、旋转画圆。让学生尝试画圆,碰到困难时,教师才给予适度指导。如:圆规的正确握法等。画任意圆是不难的,较难的是给定直径长度画圆。为了突破这一难点,学生画圆时,由不熟练到熟练,由画任意圆到按给定半径长度画圆,再到给定直径长度画圆,循序而渐进。再次借助多媒体演示,感知圆的形成,结合实际操作,关键让学生体会圆规两脚的距离即半径,体会圆心决定圆的位置,半径决定圆的大小,有利于加深对圆的特征的认识。
圆的画法是本课时又一个教学难点,我采用操作法与尝试法相结合,力求花最少的时间获得最佳效果,充分发挥学生的主体作用,培养他们的探索精神和尝试精神。
(三)巩固练习
通过判断题、选择题、看图回答问题来进一步考察学生对于圆各部分名称、半径与直径长度关系的掌握情况。再抽学生回顾本节课所学知识点,加深印象。
(四)感受数学应用与生活,增强学习兴趣。
提出问题车轮为什么会是圆的?让学生知道把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的.路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.通过这样的延伸,使学生初步感受数学知识来源于现实生活,又服务于现实生活,进一步体会数学与生活的联系,增强学习和应用数学的信心。
(五)布置作业,培养学生创新意识。
通过欣赏生活中的圆,感受圆的美与神奇,明白生活中因为有了圆而变得格外多姿多彩。布置课后作业,利用圆规和直尺创作一幅美丽的作品,培养学生自主学习的意识与创新意识。
四、说板书设计:
板书就像一份微型教案,将圆的三个部分与圆各部分之间关系用简易的文字概括出来,简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆,理清文本脉络,体现教学过程与教学目标的统一。
五、教学反思:
1、密切联系生活实际,体会数学就在身边。我事先也准备一些图片让同学们了解在自然现象、建筑物等都能找到圆的足迹,让学生知道圆在生活中很多很多,调动了学生学习的积极性。
2、课前我给学生布置了两个任务:一是剪一圆形纸片,二是寻找生活中的圆。通过这两个任务使学生对圆有了初步的感知,为学生进一步认识圆做好了充分的准备。
3、重视引导学生用多种感官参与知识的形成过程。我在引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的的画法时,有目的、有意识地安排了动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论。
4、不足之处。
(1)时间把握的不太准。
(2)自主探索环节效果不太明显。
(3)学生预习不到位,今后需要加强预习的指导。
以上,对本课进行了说明,我的说课到此结束,谢谢各位评委老师。
数学说课稿 篇3
一、教材分析:
苏霍姆林斯基曾说过:"教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少".可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
(一)教材的地位与作用。
《运用公式法——平方差公式》是北师大版义务教育课程标准实验教科书《数学》八年级(下)第二章分解因式的第三节内容。分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。分解因式的变形不仅体现了一种"化归"的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
(二)教学重难点、关键:
1、重点:掌握公式法中的平方差公式进行分解因式。
2、难点:灵活地运用公式法或已学过的提公因式法进行分解因式,正确判断因式分解的彻底性。
3、关键:把握住分解因式的方法如提公因式、公式法等,在对多项式进行分解因式时,首先应考虑提公因式,而且应该提取彻底。
二、目标分析:
参照《数学课程标准》的要求及教材的特点和学生的认知水平与数学思维特征,确定本节课的教学目标如下:
(一)知识与技能目标:
会用平方差公式进行因式分解,并进一步感受整式乘法与分解因式的互逆关系。
(二)过程与方法目标:
经历通过平方差公式逆向运算的推导得出用公式分解因式的方法的过程,发展学生的逆向思维和推理能力。
(三)情感与态度目标:
学生通过自己的实践去领悟、分析、总结技能技巧,树立学习的自信心;通过独立思考和交流讨论发现问题情境中的变形关系,培养学生逆向思考问题的习惯与应用意识,并渗透转化的思想和矛盾的对立统一观点。
三、教学过程:
根据新的教育理念和教学原则,我以学生为中心,设计教学流程如下:
(一)创设情境,激发兴趣;(二)分析问题,发现新知;
(三)合作交流,探索新知;(四)例题探究,体验新知;
(五)随堂练习,巩固新知;(六)归纳小结,形成体系。
教学过程 设计意图
(一)创设情境,激发兴趣
活动1:你知道下列算式的结果吗?
(1) 6782-3782 (2) 852-842
你想知道怎样才能算的快吗?
活动2:将边长为a的正方形四角各剪去一个边长为b的小正方形,观察你剪剩下的部分,并思考:怎样计算剪剩下部分的面积?
如果a=3.6 b=0.6呢? 学起于思,思起于疑,无疑则无知。教育家托尔斯泰说过:成功的教学所需要的不是强制,而是唤起学生强烈的求知欲望,激发学生的兴趣。充分利用媒体教学的直观性,动画显示学生熟悉的剪纸操作,创设问题情境引发学生思考。使学生把学习当成一种自我需要,为学生营造一种轻松、和谐的学习氛围,从而自然导入新课。
教学过程 设计意图
(二)分析问题,发现新知
问题:我们知道,(a+b)(a-b)=a2-b2,能否将它反过来得到a2-b2=(a+b)(a-b)呢?
活动3:(1)观察多项式X2-25,9X2-y2,它们有什么共同特征?(2)尝试将它们分别写成两个因式的乘积,并与同伴交流。 "有效的教学一定要从学生已经知道了什么开始".通过设问,引起全体学生注意,与教师一起进行积极的思维,尽快进入学习状态,所设问题用于复习相关知识与技能进行诊断检测,并针对所存在的缺陷进行补偿教学,为学生学习新知识奠定基础。
(三)合作交流,探索新知
问题:(1)用语言叙述公式(体现合作)。
(2)公式有什么特点?
(3)公式中的字母a、b可以表示什么?
活动4:根据你对公式的理解,请举出几个用平方差公式分解的例子,并指出多项式中谁相当于公式中的字母a,谁相当于公式中的字母b?(尽可能地让学生探索、发现)。
x2-25=x2-52=(x+5)(x-5)
a2-b2=(a+b)(a-b)
9x2-y2=(3x)2-y2=(3x+y)(3x-y) 问题是知识、能力的生长点,富有挑战性的问题能激发原有认知,促使学生主动地进行探索和思考。通过引导学生对问题情境循序渐进的探讨,让学生猜一猜、想一想,使他们体会了知识的发生、发展过程及怎样从复杂情境中分离、抽象出数学模型,培养了学生从特殊到一般的认知方法。
(四)例题探究,体验新知:
例1 填空:(1)25m2=( )2 (2)0.49b2=( )2 (3) c2=( )2
例2:把下列各式分解因式
(1)25-16x2 (2)9a2- b2
例3:把下列各式分解因式
(1)9(m+n)2-(m-n)2 (2)2x3-8x
例4:计算(1)6782-3782 (2)852-842 "实践出真知".教师通过引导、启发,让学生分4人小组,进行合作学习、讨论、交流,使学生在解决问题的过程中,不断获得成功的体验,增强他们的创新意识和能力。
(五)随堂练习,巩固新知:
1、判断正误:
(1)x2+y2=(x+y)(x+y)( ) (2)x2-y2=(x+y)(x-y)( )
(3)-x2+y2=(-x+y)(-x+y)( ) (4)-x2-y2=-(x+y)(x-y)( )
2、把下列各式分解因式:
(1)a2b2-m2 (2)(m-a)2-(n+b)2
(3)x2-(a+b-c)2 (4)-16x4+81y4
3、解决(一)活动2所提出的问题。 "学生思维的水平高低与基本技能是密切相关的,只有通过强化训练,才能提高学生的思维起点。"1、2题的目的,是巩固新知,对学习中有困难的学生,给予适当的点拨和鼓励,及时发现学生出现的问题。而第3题,增强了知识的运用性,使学生学以致用,形成能力。同时,体现数学活动是学生自己构建数学知识的活动,教师起到引导学生进行有效地构建数学知识的活动。
(六)归纳小结,形成体系
1、因式分解与乘法公式的关系。
2、平方差公式的特点。
3、应用平方差公式分解因式的多项式应满足的条件。
4、公式中字母a、b可以是任意数、单项式或多项式。 归纳是一种推理的方法,由一系列具体的事例概括出原理(跟"演绎"相对)。能使学生的感性认识升华到理性认识,既可锻炼学生由具体到抽象的思维能力,培养学生数学语言的表达能力,严谨的.逻辑思维品质。先引导学生自由发言、互相补充,教师进行修正、精炼阐述。这样的小结既梳理了知识,又点明了本节课的学习要点,同时使学生对本节知识体系有一个清晰的认识,为下节的学习打下良好基础,起到画龙点晴的作用。
(七)布置作业,反思提炼。P56 习题2.4 1、2、3
四、教学方法
通过对新课程标准及新教材研究,我认为数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学应从学生实际出发,创设有利于学生自主学习的问题情境,引导学生通过实践、探索、交流获得知识,形成技能,发展思维,进而达到学会学习,促使学生在教师指导下,生动活泼的、主动和富有个性的学习,在教学活动中,教师应该发挥民主、成为学生数学活动的组织者、引导者和合作者。而我校所开发的省级课题《课程实施与教学改革——数学思维方法与应用性问题教学的实践研究》中,明确提出预期目标:
(1)培养兴趣,促进思维;(2)适当分段,分散难点,创造条件让学生乐于思维;(3)在数学学习中要使学生思维活跃,就要教会学生
分析问题的基本方法,培养学生正确的思维方式;(4)重视基本方法和基本解题思想的渗透与训练。基于以上的理念和目标,我确立了以下的教法和学法。
(一)教学方法
依据本课特点,从学生已有实际经验出发,遵循新课程的理念,根据教学原则,变被动学习为主动学习,使课堂教学生动,有趣,高效。因此在教学中,以自主探索为主,启发、诱导贯穿教学始终,师生以愉快对话形式共同探索、步步深入,合作交流展开教学,下面我谈谈为什么使用这些方法?
1、自主探索法
苏霍姆林斯基曾说:"在人的心灵深处,都有一种根深蒂固的超大规模需要,这就是 希望感到让自己是一个发现者,研究者。教师作用是要发现、强化这种探索精神".通过巧设问题情境,把要学习的知识,置于具体鲜活的问题情境和嵌于一定活动背景中,使学生对知识多角度的丰富的理解,并能结合自己原有的经验探索新知,从而建构自己所坚持的判断和信念。如教学中,通过活动1~4,让学生思考、探索判断,在学生迷惑之际,用活动3导航,让学生自己体验猜想,这样不仅点燃学生思维的火花,还激发学生的信心和勇气,自己去分析、自己去解决,使他们体验探索知识奥秘的乐趣,真正体现了"教是为了不教"的教育的最终目标。
2、愉快教学法
"如果我们能做到百分之百的使孩子们兴致勃勃地学习,不仅是孩子们的幸福,并且也是教师的幸福。这就是当代教育和教育思想家的旋律。"在教学中利用例题让学生讨论,不失时机地启发学生质疑、问难,让学生有疑必质、有难必问、有感必发,让每个学生积极发言,变"厌学"为"好学",变"苦学"为"乐学",变"要我学"为"我要学",从而让每个学生喜欢数学,把学习作为一种快乐的活动,从中享受学习数学的乐趣。
(二)教学手段
根据教学直观性原则,考虑到学生仍处在以直观、形象思维为主要思维方式的时期。在教学中采用针对性强的相应措施,创设具体的问题情境,运用电教手段进行必要的动态演示,用活动紧扣对平方差公式的感知,让学生动脑、动手、动口,积极参与教学全过程,逐步由图形的直观,语言的直观向抽象思维过渡,增大教学容量和直观性,提高教学效率和教学质量。
(三)学法指导
当今时代是人类知识和信息量以几何级数递增的时代,现代教育所面临的最严峻的挑战,已不是如何使受教育者学到知识,而是如何使他们"学会学习".正如埃德加?富尔所说:"未来的文盲,不再是不识字的人,而是没有学会怎样学习的人。"我们古人也说:"授人以鱼,不如授人以渔".因此在教学中我始终把学生推到学习的前沿,引导他们"动眼看、动脑想、动口说、动手练",让他们在生活中感受数学,在合作交流中理解数学,在实验操作中探索数学,在做数学的过程中,学会数学,充分体现了新课程标准中所强调的自主探索,合作互动,创造性学习这样的有效 的学习方式。
五、教学评价
教学评价是教学活动的重要环节,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展。同时也是教师反思和改进教学的有力手段。史密斯一泰勒报告指出:"评价教育效果,不能只是测定学生的某些能力和特征,而更应评价受教育者向着教育目标成长发展的过程".为此这节课我作了如下的评价:
1、评价学生的学习过程
课标指出:"对学生数学学习过程的评价,包括参与教学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、数学思考的发展水平等方面".从这个理论出发,我废除了过去只注重结果的评价。在本节课上,注意观察学生是否乐于与他人合作,愿意与同伴交流自己的想法?哪些问题是大多数学生独立思考能达到,哪些问题是学生通过合作交流才能完成;学生思考的是否有条理?学生的符号表达是否较以前有所发展?及时发现学生的点滴进步并给予鼓励。
2、评价学生发现问题、解决问题的能力
思维总是从问题开始的,本节课试图让学生在不断解决问题、发现问题中学习。如活动1~4等实际问题的解决,使他们知识得到掌握,能力得到训练,情感得到体验,各方面都能取得全面和谐的发展。虽然有的学生不能把每一道题都做完整,但他们积极思考、交流,对这样的学生应给予表扬肯定,帮助他们积极向上。
总之,本课力求达到:"凡是能由学生提出的问题就不要由教师给出;凡是能由学生解的例题就不要由教师解答:凡是能由学生完成的表述就不要由教师写".本节课自始至终,体现学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。让学生感知数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
教学设计说明
1、本节课根据新课程标准的教育理念和学生实际,结合具体内容,从培养学生学习数学的兴趣入手,采用"问题情景——数学抽象建立数学模型——应用解释"的形式展开,让学生理解数学知识的产生就是人类对实际问题抽象、构建的过程,让学生经历同化新知识,构建新知识意义的过程。
2、设置问题导入新课,从直观的图形及其有关计算出发,帮助学生尽快找到问题的切入点。
3、给学生提供探索和交流的空间。设置有现实意义的、具有挑战性的问题,激发学生积极思考,引导学生自主探索与合作交流,提高解决问题的能力,发展创新意识和实践能力。
4、内容上挖掘课本资源,设计有弹性,设置了不同层次的学习要求,尊重学生个体差异,满足多样化的学习需要。实现"不同的人在数学上得到不同的发展".
5、在学生从事数学活动时,不仅关注学生的学习水平,而且关注他们在活动中表现出来的情感与态度。比如:是否主动与同学合作,是否愿意与同学交流自己的看法,是否表现出了兴趣,能否用数学语言表达以及是否尊重他人等进行评价。
(北师大版)八年级下册第三章第一节《分式》(P58---60)
我们知道,分式是表示数量关系的工具,是解决实际问题的一种模型。本节课的内容是分式的起始课。下面我将从教学背景、教法学法、教学过程、设计说明四个方面来具体阐述我对这节课的理解和设计。
一、教学背景
1.教学内容分析
(1)地位与作用:《分式》是北师大版新教材八年级下册第三章第一节,本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、意义和用分式表示数量关系。分式是继整式之后,又一代数学习的基本内容,是小学所学分数的延伸和扩展,学好本节课,是今后继续学习分式的性质、运算以及解分式方程的前提。
(2)重点:分式的概念
(3)难点:识别分式有无意义;用分式描述数量关系
分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式表示数量关系是教学的难点。
2.教学目标
(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
经过七年级一年的学习,学生初步养成了自主探究意识。一方面,在七年级下册中,学生已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,"分式"是"分数"的"代数化",学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以上3个方面为本节课的教学目标。
二、教法与学法
基于以上教材特点和学生情况的分析,我在本节课主要采用"引导—发现教学法",借助于计算机课件,通过"问题情境—建立模型—解释、应用与拓展"的模式展开教学。
三、教学过程
《数学课程标准》明确指出:"数学教学是数学活动的教学,学生是数学学习的主人。"为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
(一) 发现新知
在这儿我对教材进行了处理,课本引例是 "土地沙化、固沙造林"问题,设问是"这一问题中有哪些等量关系?"我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境:
1.创设情境:
师生共同欣赏画面,教师给出探究要求:
"代数式"庄园的果树上挂满了"整式"的果子:t,300,s,n,a-x,0,180(n-2),请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有新的一类代数式吗?请说一说。
作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。
"好的教师不是在教数学而是激发学生自己去学数学".用已给的7个整式进行代数式的构造时,学生可以写出多种多样的式子,里面既有单项式,()也有多项式,还有分式。通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。
2.探索交流 :
(1)议一议:你们所发现的这一类新代数式: , ,??它们有什么共同特征?它们与整式有什么不同?
(2)类比分数,概括分式的概念及表达形式
被除数÷除数=商数 被除式÷除式=商式
3 ÷ 4 = n ÷ (a-x) =
整数 整数 分数 整式 整式 分式
(3)小组内互举例子,判定是否分式的分母可以为零
(二)讲解新课
这一环节是整个教学活动的中心环节,为了充分体现学生在整个教学活动中的主体地位,我将在学生已有知识经验的基础上组织学生进行学习,探究分式的概念、意义以及简单应用,加深他们度知识的理解,为此,我将新课的讲解过程细分为如下四个步骤:
1.分式的定义
为了使学生能够准确区分"分式"与"整式",加深他们对分式的理解,我打破了在传统教学中直接给出定义的常规,设计了想一想,引导学生在上一环节对所列代数死与分数进行比较的基础上,再将其与整式相比较,找出二者的异同,从而类比整式归纳总结出分式的定义。
2.分式的意义
分式的分母不能为零,即只有当分式的分母不为零时,该分式才有意义。对于这一问题的讲解,我将让学生类比分数以及结合前边的实际问题加以理解。
3.分式的基本性质
为了使学生更容易理解和接受分式的基本性质,在讲解分式的基本性质之前,我安排了议一议活动,设计了如下两道题目,引导学生对所示问题进行充分讨论,共同探索分式基本性质,然后,我将以课堂提问的方式,逐一板书讨论结果,综合学生的回答,归纳总结出分式的基本性质,即:分式的分子与分母同乘以(或除以)同一个不等于零的正式,分式的值不变。
4.例题讲解
通过具体的例题,给学生演示本节所学知识的具体应用,讲解完毕后,挑选学生上台板演,在规范学生讲解步骤的同时,加深他们对本节所学知识的理解和记忆。
至此,我完成了对本节课所有理论知识的教学。
(三)课堂练习
众所周知,理论是用来指导实践的,为了使学生能够将所学的理论知识很好的应用于实践,实现理论与实践的完美结合,我将教学程序中的第三个环节设计为课堂练习。
在这一环节中,我为学生精心挑选了课本中的两道习题,并进行了适当的改编,作为随堂练习,要求学生在本节所学知识的基础上,结合具体的题目亲自动手练一练,以便在检验本节课教学效果的同时,针对学生在练习中出现的问题进行及时的查漏补缺。
(四)课堂小结
以课堂提问的方式对本节课进行小结,结合学生的回答,教师最后给出规范总结,以重申本节课所学习的重点及难点。
(五)布置作业
针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。
必做题是教材第10页习题中的4,5,6题;
选做题是教材第10页习题中的8,9,12,13题。
五、板书设计
为了使本节课达到更好的教学效果,这就是我针对本节课的所有内容进行的板书设计,在板书设计的过程中,我的指导思想是尽可能使
得版面结构合理,简明扼要,使学生一目了然,易于抓住重点、难点和关键。
我的说课到此完毕,谢谢各位老师!
数学说课稿 篇4
一、教材分析
概率是高中数学的新增内容,它自成体系,是数学中一个较独立的学科分支,与以往所学的数学知识有很大的区别,但与人们的日常生活密切相关,而且对思维能力有较高要求,在高考中占有重要地位。
本节内容在本章节的地位:《条件概率》(第一课时)是高中课程标准实验教材数学选修2—3第二章第二节的内容,它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础。
教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模。
二、教学目标
根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
基础知识目标——掌握条件概率的定义及计算方法
思想方法目标——归纳、类比的方法和建模思想
能力培养目标——培养学生思维的灵活性及知识的迁移能力
根据这两年高考改卷的反馈信息,考生在概率题的`书面表达上丢分的情况是很普遍的,因此本节课还想达到:
表达能力目标——培养学生书面表达的严谨和简洁
个性品质目标——培养学生克服“心欲通而不能,口欲讲而不会”的困难,提高探索问题的积极性和学习数学的兴趣
三、教法
在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以生为本,遵循学生的认知规律,坚持以教师为主导,学生为主体的教学思想,体现循序渐进的教学原则,我采用引导发现法、分析讨论法的教学方法,通过提问、启发、设问、归纳、讲练结合、适时点拨的方法,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”,“练”有所“获”,使传授知识与培养能力融为一体。
四、学法
以建构主义为指导,采用以启发式教学为主,同时结合师生共同讨论、归纳的教学方法,根据学生的认知水平,为课堂设计了:
①创设情景——引入概念
②类比推导——得出公式
③讨论研究——归纳方法
④即时训练——巩固方法
⑤总结反思——提高认识
⑥作业布置——评价反馈
六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。
五、教学过程
创设情景——引入概念
首先引入两个实际问题,激发学生的兴趣。
【实例1】3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是多少?若第一个同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率是多少?
【实例2】有5道快速抢答题,其中3道理科题,2道文科题,从中无放回地抽取两次,每次抽取1道题,两次都抽到理科题的概率是多少?若第一次抽到理科题,则第二次抽到理科题的概率是多少?
每个实例有两个问题组成,后一个问题多一个限制条件,教师引导学生对比两个实例中前后问题的区别和联系,概括出条件概率的定义。
由于判断事件的类型对选择概率公式起着决定性影响,因此在引入定义后让学生再做一组判断题练习以巩固对定义的理解。
【练习】判断下列是否属于条件概率
⒈、在管理系中选1个人排头举旗,恰好选中一个的是三年级男生的概率
⒉、有10把钥匙,其中只有1把能将门打开,随机抽出1把试开,若试过的不再用,则第2次能将门打开的概率
⒊、某小组12人分得1张球票,依次抽签,已知前4个人未摸到,则第5个人模到球票的概率
⒋、两台车床加工同样的零件,第一台的次品率未0.03,第二台的次品率为0.02,两台车床加工的零件放在一起,随机取出一个零件是发现是次品,则它是第二台机床加工的概率是多少?
⒌、箱子里装有10件产品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,现从中任取3件,若取得的都是合格,则仅有1件是一等品的概率
通过以上练习使学生能准确区分条件概率与一般概率。
数学说课稿 篇5
各位老师,大家好!
今天我说课的内容是苏科版初中数学九年级上册第四章第3节《用一元二次方程解决问题》的第1课时。对于本节课我将从教材分析与学生现实分析、教学目标分析,教法与学法,教学过程这四个方面加以阐述。
(一)教材分析与学生现实分析
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。从宏观上来看,学生已经学习了一元一次方程、二元一次方程组、以及分式方程等知识,感受了方程模型的作用和价值,积累了一些用方程解决问题的经验,从微观而言,学生已经学过一元二次方程的解法为本节课的学习做好铺垫,同时作为第3节第一课时承上启下,直接影响后续的学习效果。本节课以实际问题为载体,借助有一定挑战性和思考性的现实问题情境,通过学生的自主探索研究,抽象出一元二次方程,体现数学建模的过程帮助学生增强应用认识。
然而,对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,将实际问题提炼为数学问题是我们老师实施教学设计方案不容忽视的重难点。
二、教学目标分析
数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标:
1、知识与技能:会分析实际问题中的等量关系,并能够用一元二次方程解决问题。
2、过程与方法:经历将实际问题抽象为数学问题的过程,知道解应用题的一般步骤和关键所在。
3、情感、态度与价值观:通过用一元二次方程解决实际问题,进一步理解方程是刻画客观世界的有效模型,培养学生在生活中发现问题,解决问题的能力。
重点:在实际问题中寻找等量关系,建立方程
难点:分析问题寻找等量关系
三、教法与学法
教师引导,学生自主探索、合作交流。课堂中,通过提供适当的问题情境促使学生的反思,引起学生必要的认知冲突,从而让学生最终通过其主动的思辨建构起新的的认知结构。
四、教学流程
一)课堂结构:
创设情境——互动探究——新知建构——练习巩固——小结提升
一)教学简要过程
1、创设情境
1)一个正方体的表面积是216cm2,求这个长方体的棱长。
2)一个直角三角形的面积是24cm2,两条直角边的差是2cm,求两条直角边长。
设计意图:心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的建模较为的问题情境,提高学生探究欲望。
2、互动探究
问题串:
1.通过学生自己独立审题,找寻等量关系:棱长2×6=216cm2
直角边×直角边÷2=24 cm2
2.如何设未知数,列方程?
3.怎样解方程?方程的解是否都符合题意?
设计意图:通过分析使学生感受到,先审清题意,抓准问题中的数量关系,找出相等关系,再设未知数和列方程,有利于理清思路,降低列方程解应用题的难度,从而发展学生思维能力。
3、新知构建 例题讲评
例:课本P94,组织员工旅游问题。
这一问题源于生活,具有浓厚的时代气息,但数量关系较为复杂,所以对题意的理解尤为重要。请学生独立审题,并设计问题:人数会超过30人吗?实际人均费用为多少?实际人均费用,人数与总费用有怎样的等量关系?怎样设未知数,列方程?在层层递进的问题串下帮助学生理清数量之间的关系,突破难点,建立数学模型。得到方程:[800-10(x-30)]x=28000,解方程,并引导到学生检验方程的解是否符合实际意义:“人数多于30人且不超过40人”与“人均旅游费用不得低于500元”。经历审、设、列、解、验、答六环节,培养学生用数学的意识,以及严谨客观的良好思维品质。
4、变式练习
变式:该公司有组织第二批员工到龙湾风景区旅游,并支付给旅社29250元,求该公司第二批参加旅游的员工人数。
初三学生已经有较强的知识迁移能力,通过变式练习,类比例题的.解题思想方法进而帮助学生加深对新知的理解,提高解决此类问题的能力。
5、小结提升
学而不思则罔,最后引导学生回顾收获与交流感悟,帮助形成知识体系。
1)用一元二次方程解决问题的一般步骤:审、设、列、解、验、答。
2)列方程解决问题的关键是寻找等量关系。
提升:某学校会议室的地面是一个长方形,长比宽多一米,用320块边长为25厘米的正方形瓷砖恰好可将地面铺满。求会议室地面的长和宽。
作业:P99 1、2
建构主义认为,教学方法的核心是强调学习者是一个主动的积极的知识构建者。本节课,从审题,到找等量关系,列方程等一系列活动都从学生实际出发,借助适当的问题情景或实例促使学生反思,引起学生的认知冲突,从而让学生最终通过主动的思考建构起新的认知结构。以上是我对本节课的理解与构思,不到之处请多多指正。
【数学说课稿】相关文章:
数学说课稿05-21
数学说课稿07-17
小学数学说课稿11-10
小学数学优秀说课稿05-23
初中数学优秀说课稿05-24
小学数学说课稿05-20
初中数学说课稿06-22
初中的数学说课稿07-03
中学数学说课稿09-20
高二数学说课稿07-06