高中数学说课稿

时间:2024-06-25 16:39:45 说课稿 我要投稿

高中数学说课稿15篇(优秀)

  作为一名老师,有必要进行细致的说课稿准备工作,说课稿有助于学生理解并掌握系统的知识。那么问题来了,说课稿应该怎么写?下面是小编精心整理的高中数学说课稿,仅供参考,大家一起来看看吧。

高中数学说课稿15篇(优秀)

高中数学说课稿1

  一、说教材

  1、教材的地位与作用《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课。分类计数原理和分步计数原理是排列、组合的基础,学生对这两个原理的理解,掌握和运用,成为学好本章的一个关键。

  2、教学目标

  (1)知识目标掌握计数的两个基本原理,并能正确的用它们分析和解决一些简单的问题。

  (2)能力目标通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力。

  (3)情感目标培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。

  3、重点、难点重点是分类计数原理与分步计数原理难点是正确运用分类计数原理与分步计数原理

  二、说教法启发引导式

  三、说学法指导学生运用观察分析讨论总结的学习方法。

  四、教具、学具多媒体

  五、教学程序

  1、提出课题——引入新课

  首先,提出本节课的课题分类计数原理与分步计数原理设计意图:明确任务,激发兴趣。

  2、观察归纳——形成概念:

  首先,我结合图给出问题1:

  问题1:从北京到上海,可以乘火车,也可以乘汽车。一天中有火车3班,汽车有2班。那么一天中,乘坐这些交通工具从北京到上海共有多少种不同的走法?(答案:3+2=5)由这个问题我们得到分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法‥‥‥,在第n类办法中有mn种不同的方法,那么完成这件事共有:N=m1+m2++mn种不同的方法接下来,我再结合图给出问题2:

  问题2:从北京到上海,要从北京先乘火车到郑州,再于第二天从郑州乘汽车到上海。一天中从北京到郑州的火车有3班,从郑州到上海的汽车有2班。那么两天中,从北京到上海共有多少种不同的走法?(答案:3x2=6)。

  由这个问题我们得到分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法‥‥‥,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2××mn种不同的方法。

  设计意图:由两个实际问题,引导学生得到分类计数原理与分步计数原理,培养学生的观察、归纳能力。

  3、比较归纳深化概念两个原理的比较:

  1)共同点:都是计数原理,即统计完成某件事不同方法种数的原理,因此都要先弄清是怎样一件事,如何才算完成这件事。

  2)不同点:分类计数原理中的`n类办法相互独立,且每类里的每种方法都可独立完成该事件;分步计数原理中的n个步骤缺一不可,每一步都不能独立完成该件事,只有这n个步骤都完成之后,这件事才算完成。

  设计意图:通过两个原理的比较,让更好的掌握原理的使用。

  4、学以致用——培养能力

  例1、书架的第一层放有4本不同的计算机书,第二层放有3本不同的文艺书,第3层放有2本不同的体育书。

  (1)从书架上任取1本书,有多少种不同的取法?

  (2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2、一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?

  例3、如图是广场中心的一个大花坛,国庆期间要在A、B、C、D四个区域摆放鲜花,有4种不同颜色的鲜花可供选择,规定每个区域只准摆放一种颜色的鲜花,相邻区域鲜花颜色不同,问共有多少种不同的摆花方案?

  设计意图:为了使学生达到对知识的深化理解,从而达到巩固提高的效果。

  5、任务后延——自主探究

  (1)填空:

  ①一件工作可以用2种方法完成,有5人会第一种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同的选法的种数是9。

  ②从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同走法的种数是6。

  (2)现有高中一年级的学生3名,高中二年级的学生5名,高中三年级的学生4名。

  ①从中选1人参加接待外宾的活动,有多少种不同的选法?12

  ②从3个年级各选1人参加接待外宾的活动,有多少种不同的选法?60

  (3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展开后不合并时共有多少项?60

  设计意图:培养学生灵活运用所学知识解决实际问题的能力。

  6、总结反思——提高认识本节课学习了以下内容(1)分类计数原理(2)分步计数原理(3)两个原理的比较(4)用两个原理解题的步骤

  设计意图:突出重点,帮助学生对所学知识系统化、条理化

  7、布置作业——知识拓展P97习题10。11,2,3题设计意图:巩固所学知识,发现和弥补教学中的遗漏和不足,培养学生良好的学习习惯。

  六、板书设计(略)

高中数学说课稿2

  尊敬的各位专家、评委:

  下午好!

  我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的`经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (5)小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本

  节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

高中数学说课稿3

  一、教材分析

  教材的地位和作用:本节课教学内容是高一(下)第四章4.6节第一课时(两角和与差的余弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分的题。

  教学重点:两角和与差的余弦公式的推导与运用。

  教学难点:余弦和角公式的推导以及应用,学会恰当代换、逆用公式等技能。

  二、教学目标

  (一)知识目标:

  1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;

  2、能用代换法推导C(α-β)公式;

  3、初步学会公式的简单应用和逆用公式等基本技能。

  (二)能力目标:

  1、通过公式的推导,在培养学生三大能力的基础上,着重培养学生获得数学知识的能力和数学交流的能力;

  2、通过公式的灵活运用,培养学生的`转化思想和变换能力。

  (三)情感目标:

  1、通过观察、对比体会公式的线形美,对称美

  2、通过教师启发引导,培养学生不怕困难,勇于探索勇于创新的求知精神。

  三、学情分析:

  根据现在的学生知识迁移能力差、计算能力差的特点,第一节课不要太多公式应用。

  四、教法分析

  1、创设情境----提出问题----探索尝试----启发引导----解决问题。

  引导学生建立一直角坐标系xOy,同时在这一坐标系内作单位圆O,并作出角,使角的始边为Ox,交圆O于点,终边交圆O于点;角的始边为O,终边交圆O于,角的始边为O,终边交圆O于点,并引导学生用的三角函数标出点的坐标。并充分利用单位圆、平面内两点的距离公式,使学生弄懂由距离等式化得的三角恒等式,并整理成为余弦的和角公式,从而克服本课的难点。

  2、教具:多媒体投影系统。(多媒体系统可以有效增加课堂容量,色彩的强烈对比可以突出对比效果;动画的应用可以将抽象的问题直观化,体现直观性原则。)

  五、学法指导

  1、能灵活求写角的终边与单位圆的交点坐标,并结合平面几何知识推证出公式。

  2、本节的中心公式是,然后对作不同的特值代换可得其他公式,故灵活适当的代换是学好本节内容的基础。

  3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。

  在教学过程中,启动学生自主性学习,自得知识,自觅规律,自悟原理,主动发展思维和能力。

  六、教学过程

  (一)新课引入,产生对公式的需求。

  1、学生先讨论“ =cos(450+300)=cos450+cos300是否成立?”。(学生可能通过计算器、量余弦线的长度、特殊角三角函数值和余弦函数的值域三种途径解决问题)。得出cos(450+300)≠cos450 +cos300。进而得出cos(α+β)≠cosα+cosβ这个结论。那么此时又是多少,75°,15°虽然不是特殊角,但有某种特殊性,即可以表示成特殊角的和与差。那么能不能由特殊角的三角函数值来表示这种和角与差角的三角函数值?

  2、如果特殊角可以,对一般的两个角,当它的三角函数值已知时,能否求出和与差的三角函数值?即能否用单角的三角函数来表示复角的三角函数呢?提出cos(α+β)又等于什么呢?写出标题。

  (二)预备知识

  在解决上面的问题之前,我们先来作一点准备,解决“平面内两点间距离的公式”这一问题。

  (1)回忆初中学习过的数轴上的两点间的距离公式

  (2)通过上面的复习,我们已经熟悉了数轴上两点间距离公式。那么,平面内两点间距离与这两点的坐标有什么样的关系呢?(通过课件演示让学生体会平面内两点间距离和同一坐标轴上两点间距离的关系)

  平面内两点间距离公式推导分析:设P1(x1,y1),P2(x2,y2)由勾股定理联想从P1、P2分别作X、Y轴的垂线,则有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通过演示课件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根据勾股定理写出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面内P1(x1,y1)、P2(x2,y2)两点间的距离公式:P1P2= (x2-x1)2+(y2-y1)2

  习:P(3,-1),Q(-3,-9)求PQ(建议这部分不要花太多时间)

  (3)、复习单位圆上点的坐标表示,为推导公式作铺垫。

  (三)公式推导

  我们要用α、β、α+β的三角函数来表示α+β的余弦,那么就得作出α、β、α+β的角,构造α、β、α+β的角时,联想建坐标系、作单位圆。(1)分别指出点P1、P2、P3的坐标。(2)求出弦P1P3的长。(3)思考构造弦P1P3的等量关系。当发现|P1P3|可以用cos(α+β)表示时,想到应该寻找与P1P3相等的弦,从而才想到作出角(-β)。

  在直角坐标系内做单位圆,并做出任意角α,α+β和-β。它们的终边分别交单位圆于P2、P3和P4点,单位圆与X轴交于P1。则:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、

  1.根据“同圆中相等的圆心角所对的弦相等”得到距离等式

  2.将转化为三角恒等式,逐步变形整理成余弦的和角公式。

  [cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展开,整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ

  所以cos(α+β)=cosαcosβ-sinαsinβ.记作

  注意:(1)公式的结构特征:左边是两角和的余弦,右边是两两同名函数的积。

  (2)公式的记忆口诀:哥哥捡伞伞(用音译,让学生觉得有趣并得以记住公式)

  (3)公式的用途:用单角α、β的三角函数来表示复角的α+β余弦

  (4)注意强调公式中α、β是任意角。因为α、β是任意角,且两点间的距离公式具有一般性,所以此公式适用于任意角,具有一般性。以后可以用此公式导出其它公式,如用-β去代替β导出C(α-β) 。

  (四)公式应用

  正因为α、β的任意性,所以赋予C(α+β)公式的强大生命力。

  提问:

  1、请用特殊角分别代替公式中α、β,你会求出哪些非特殊角的值呢?

  让学生动笔自由尝试、主动探索。同学会求cos15°、cos75°、cos105°等。

  2、若β固定,分别用代替α,你将发现什么结论呢?

  用C(α±β)公式得到证明:让学生发现C(α±β)公式是诱导公式的推广,诱导公式是C(α±β)公式的特殊情况。当其中一个角是的整数倍时用诱导公式较好。

  由P1P3=P2P4(同圆相等的

  圆心角所对弦相等)及两点

  间距离公式,得:

  [cos(α+β)-1]2+[sin(α+β)-0]2

  =[cos(-β)-cosα]2+[sin(-β)-sinα]2

  展开整理合并得:

  cos(α+β)=cosα cosβ-sinαsinβ这就是两角和的余弦公式。(其中α,β为任意角)将其中β换成-β,公式仍成立:

  cos(α+ β)=cosαcosβ -sinαsinβ

  cos(α+(-β))= cosαcos(-β)-sinαsin(-β)

  化简得两角差的余弦公式:

  cos(α-β)= cosαcosβ+sinαsinβ

  求证:(1)cos(-α)= sinα

  (2)sin(-α)= cosα

  证明:

  (1)cos(-α)=cos cosα+sin sinα

  =sinα

  (2)sin(-α)=cos[ -(-α)]

  =cosα

  证明(1)、(2)的结论即为诱导公式。

  例1、利用和(差)角公式求750、150角的余弦。

  分析:将750可以看成450+300而450和300均为特殊

  角,借助它们即可求出750的余弦。(学生自己完成)

  解:cos750 = cos(450+300)

  = cos450cos300 -sin450sin300

  = ×- ×

  =cos150

  = cos(450-300)

  = cos450cos300+sin450sin300

高中数学说课稿4

  一、教材分析

  1.从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

  2.从学生认知角度看

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

  3.学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

  4.重点、难点

  教学重点:公式的推导、公式的特点和公式的运用.

  教学难点:公式的推导方法和公式的`灵活运用.

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

  二、目标分析

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础

  上能初步应用公式解决与之有关的问题.

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

  化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之

  间等价转化和理论联系实际的辩证唯物主义观点.

  三、过程分析

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1.创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

  2.师生互动,探究问题

  在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

  3.类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

  对不对?这里的q能不能等于1?等比数列中的公比能不能为

  1q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

  4.讨论交流,延伸拓展

高中数学说课稿5

  一、教材分析

  本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。

  从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。

  二、教学目标

  根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:

  知识与技能:

  1. 知道最小二乘法和回归分析的思想;

  2. 能根据线性回归方程系数公式求出回归方程

  过程与方法:

  经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。

  情感态度与价值观

  通过合作学习,养成倾听别人意见和建议的良好品质

  三、重点难点分析:

  根据目标分析,确定教学重点和难点如下:

  教学重点:

  1. 知道最小二乘法和回归分析的'思想;

  2.会求回归直线

  教学难点:

  建立回归思想,会求回归直线

  四、教学设计

  提出问题

  理论探究

  验证结论

  小结提升

  应用实践

  作业设计

  教学环节

  内容及说明

  创设情境

  探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

  问题与引导设计

  师生活动

  设计意图

  问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?

  教师提问,学生

  通过动手操作得

  出散点图并回答

  以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。

  教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.

  问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,

  乙,丙三个同学的判断有什么看法?

  学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一

  该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。

  问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多

  在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题

  通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。

  学生可能提出的问题:

  ①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?

  ②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?

  ③这些样本数据揭示出两个相关变量之间怎样的关系呢?

  ④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果

高中数学说课稿6

尊敬的各位专家、评委:

  上午好!

  今天我说课的课题是人教a版必修1第二章第二节《对数函数》。

  我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  地位和作用

  本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。

  (一)、教学目标

  根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:

  1、知识与技能

  (1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;

  (2)、理解对数函数的概念、掌握对数函数的图像和性质;

  (3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

  2、过程与方法

  引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。

  3、情感态度与价值观

  通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。

  (二)教学重点、难点及关键

  1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

  2、难点:底数a对对数函数的图像和性质的影响。

  [关键]对数函数与指数函数的类比教学。

  由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。

  (一)、教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  1、启发引导学生思考、分析、实验、探索、归纳;

  2、采用“从特殊到一般”、“从具体到抽象”的方法;

  3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;

  4、投影仪演示法。

  在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

  (二)、学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  1、对照比较学习法:学习对数函数,处处与指数函数相对照;

  2、探究式学习法:学生通过分析、探索,得出对数函数的定义;

  3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;

  4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  (一)、教学过程设计

  1、创设情境,提出问题。

  在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

  问题一:这是一个怎样的函数模型类型呢?

  设计意图

  复习指数函数

  问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

  设计意图

  为了引出对数函数

  问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

  设计意图

  (1)、为了让学生更好地理解函数;

  (2)、为了让学生更好地理解对数函数的概念。

  2、引导探究,建构概念。

  (1)、对数函数的概念:

  同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的.。

  设计意图

  前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

  但是在习惯上,我们用x表示自变量,用y表示函数值。

  问题一:你能把以上两个函数表示出来吗?

  问题二:你能得到此类函数的一般式吗?

  设计意图

  体现出了由特殊到一般的数学思想

  问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。

  问题四:你能根据指数函数的定义给出对数函数的定义吗?

  问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?

  设计意图

  前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。

  (2)、对数函数的图像与性质

  问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

  设计意图

  提示学生进行类比学习

  合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。

  y=2x;y=log2x y=()x,y=log x

  合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?

  设计意图

  在这儿体现“从特殊到一般”、“从具体到抽象”的方法。

  合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。

  设计意图

  学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax(a>0,a≠1,)是否具有奇偶性,为什么?

  问题2:对数函数y=logax(a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y问题3:对数式logab的值的符号与a,b的取值之间有何关系?0>

  知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。

  3、自我尝试,初步应用。

  例1:求下列函数的定义域

  y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。)

  例2:利用对数函数的性质,比较下列各组数中两个数的大小:

  (1)、㏒2 3.4,log2 3.8;

  (2)、log0.5 1.8,log0.5 2.1;

  (3)、log7 5,log6 7

  (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

  合作探究4:已知logm 4

  设计意图

  该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。

  4、当堂训练,巩固深化。

  通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

  采用课后习题1,2,3.

  5、小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

  (1)、小结:

  ①对数函数的概念

  ②对数函数的图像和性质

  ③利用对数函数的性质比较大小的一般方法和步骤,

  (2)、反思

  我设计了三个问题

  ①、通过本节课的学习,你学到了哪些知识?

  ②、通过本节课的学习,你最大的体验是什么?

  ③、通过本节课的学习,你掌握了哪些技能?

  (二)、作业设计

  作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

  我设计了以下作业:

  必做题:课后习题a 1,2,3;

  选做题:课后习题b 1,2,3;

  (三)、板书设计

  板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

高中数学说课稿7

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的'兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为

  教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

  二、说教法和学法

  接下来则是说教法、学法

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究

  让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线 的距离等于定长 的所有的点;

  (4)方程 的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作aA

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作 N

  正整数集:

  整数集:记作 Z

  有理数集:记作 Q 实数集:记作 R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移 变式训练

  1.下列指定的对象,能构成一个集合的是

  ① 很小的数

  ② 不超过30的非负实数

  ③ 直角坐标平面内横坐标与纵坐标相等的点

  ④ π的近似值

  ⑤ 所有无理数

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题 课本习题1.1—1、2、3.

  2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。

  设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示

  4.范例研究

高中数学说课稿8

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

  难点:在可行域内,用图解法准确求得线性规划问题的最优解。

  二、目标分析:

  在新课标让学生经历"学数学、做数学、用数学"的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

  域和最优解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的最优解.

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

  1、创设情境,提出问题:

  在课堂教学的开始,我以一组生动的.动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

  接着我设置了一个具体的"问题"情境,即世界杯冠军意大利足球队(插图片)营养师布拉加经常遇到的这样一类营养调配问题:

  甲、乙、丙三种食物的维生素A、B的含量及成本如下表:

  甲

  乙

  丙

  维生素A(单位/千克)

  400

  600

  400

  维生素B(单位/千克)

  800

  200

  400

  成本(元/千克)

  7

  6

  5

  布拉加想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?

  同学们,你能为布拉加解决这个棘手的问题吗?

  首先将此实际问题转化为数学问题。我请学生完成这一过程如下:

  解:设所购甲、乙两种食物分别为x、y千克,则丙食物为10-x-y千克.

  由题意可知x、y应满足条件:

  即①

  又设成本为z元,则z=7x+6y+5(10-x-y)=2x+y+50.

  于是问题转化为:当x、y满足条件

  ①,求成本z=2xy50的最小值问题。

  【设计意图】数学是现实世界的反映。通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。

  2、分析问题,形成概念

  那么如何解决这个求最值的问题呢?这是本次课的难点。我让学生先自主探究,再分组讨论交流,在学生遇到困难时,我运用化归和数形结合的思想引导学生转化问题,突破难点:⑴学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域。(教师动画演示画不等式组①表示的平面区域。)于是问题转化为当点(x,y)在此平面区域内运动时,如何求z=2xy50的最小值的问题。⑵由于此问题难度较大,我试着这样引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2xy50作某种几何解释呢?学生很自然地想到要将等式z=2xy50视为关于x,y的一次方程,它在几何上表示直线。当z取不同的值时可得到一族平行直线。于是问题又转化为当这族直线与此平面区域有公共点时,如何求z的最小值。⑶这一问题相对于部分学生来说仍有一定的难度,于是我继续引导学生:如何更好地把握直线2xy50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2xz-50。至此,学生恍然大悟:原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小。于是问题又转化为当直线y=-2xz-50与平面区域有公共点时,在区域内找一个点P,使直线经过点P时在y轴上的截距最小。

  (紧接着我让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元。)

  【设计意图】数学教学的核心是学生的再创造。让学生自主探究,体验数学知识的发生、发展的过程,体验转化和数形结合的思想方法,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。

  就在学生趣味盎然之际,我就此给出相关概念:

  不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件。z=2xy50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数。由于z=2xy50又是x、y的一次解析式,所以又叫做线性目标函数。

  一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。其中使目标函数取得最大值或最小值的可行解都叫做这个问题的最优解。象上述求解线性规划问题的方法叫图解法。

  由前面实际问题的解决自然地过渡到新概念的讲解,使得知识的衔接较为顺畅,概念的形成水到渠成。

  3、反思过程,提炼方法

  解题回顾是解题过程中重要又常被学生忽略的一个环节。我借用多媒体辅助教学,动态演示解题过程,引导学生归纳、提炼求解步骤:

  (1)画可行域--画出线性约束条件所确定的平面区域;

  (2)过原点作目标函数直线的平行直线l0;

  (3)平移直线l0,观察确定可行域内最优解的位置;

  (4)求最值--解有关方程组求出最优解,将最优解代入目标函数求最值。

  简记为画--作--移--求四步。

  4、变式演练,深入探究

  为了让学生更好地理解图解法求线性规划问题的内在规律,我在例1的基础上设计了例2和两个变式:

  例2.设z=2x-3y,式中变量x、y满足下列条件,求z的最大值和最小值。

  【设计意图】进一步强调目标函数直线的纵截距与z的最值之间的关系,有时并不是截距越大,z值越大。

  变式1.设z=axy,式中变量x、y满足下列条件,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围。

  变式2.设z=axy,式中变量x、y满足下列条件,若使目标函数z取得最大值的最优解有无数个,求a的值。

  【设计意图】用已知有唯一(或无数)最优解时反过来确定目标函数某些字母系数的取值范围来训练学生从各个不同的侧面去理解图解法求最优解的实质,培养学生思维的发散性。

  (以上两个变式均让学生用几何画板进行实验,探求解决方法。并引导学生总结出:最优解一定位于多边形可行域的顶点或边界直线处。)

  5、运用新知,解决问题

  "学数学而不练,犹如入宝山而空返"。为了及时巩固知识,反馈教学信息,我安排了如下练习:

  练习1:教材p64练习第1题

  【设计意图】及时检验学生利用图解法解线性规划问题的情况。

  练习2:设z=2xy,式中变量x、y满足下

  列条件①,求z的最大值和最小值。

  (学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点。同座同学间相互交流、批改和更正。)

  【设计意图】除了帮助学生巩固新学的知识,还能引导学生运用新知识,迅速清楚地发现以前用解不等式的知识错解此类题的原因。让学生再一次深刻体会到数形结合的妙处,同时又巩固了旧知识,完善了知识结构体系。

  6、归纳总结,巩固提高

  (1)归纳总结

  为使学生对所学的知识有一个完整而深刻的印象,我请学生从以下两方面自己小结。

  (1)这节课学习了哪些知识?

  (2)学到了哪些思考问题的方法?

  (学生回答)

  【设计意图】有利于学生养成及时总结的良好习惯,并将所学知识纳入已有的认知结构,同时也培养了学生数学交流和表达的能力。

  (2)巩固提高

  布置作业:

  1.阅读本节内容,完成课本P65习题7.4第2题

  2.思考题:设z=2x-y,式中变量x、y满足下列条件

  且变量x、y为整数,求z的最大值和最小值。

  【设计意图】让学生巩固所学内容并进行自我检测与评价,并为下一课时解决实际问题中的最优解是整数解的教学埋下伏笔。

  四、教法分析:

  鉴于我校高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课我以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。

  (1)设置"问题"情境,激发学生解决问题的欲望;

  (2)提供"观察、探索、交流"的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。

  (3)利用多媒体辅助教学,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,又提高了教学效率。

  (4)指导学生做到"四会":会疑;会议;会思;会变。在教学过程中,重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略。

  五、评价分析

  本节课我的设计理念遵循以下四条原则:以问题为载体;以学生为主体;以合作交流为手段;以能力提高为目的。重视概念的提取过程;知识的形成过程;解题的探索过程;情感的体验过程。学生通过自主探究、合作交流,体会合作学习的默契和谐,体会冥思苦想后的豁然开朗,体会逻辑思维的严谨美,体会一题多变的变幻美,体会数形结合的奇异美。

高中数学说课稿9

尊敬的各位考官:

  大家好,我是X号考生,今天我说课的题目是《圆的标准方程》。

  对于本节课,我将以教什么、怎么教、为什么这么教为思路,从教材分析、学情分析、教学重难点等几个方面加以阐述。

  一、说教材

  首先谈一谈我对教材的理解。本节课选自人教A版实验版高中数学必修二,主要探究圆的标准方程。此前学生已经学习了在平面直角坐标系中用方程表示直线,起到良好的铺垫作用。本节课为后续学习圆的一般方程及进一步学习平面解析几何打下基础。

  二、说学情

  再来谈谈学生的情况。高中生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、说教学目标

  基于以上分析,我制定了如下三维教学目标:

  (一)知识与技能

  掌握圆的标准方程,能够在给出基本条件的情况下求出圆的标准方程。

  (二)过程与方法

  经历探究圆的标准方程的过程,提升逻辑推理、直观想象与数学运算能力。

  (三)情感、态度与价值观

  获得成功的体验,增强学习数学的兴趣与信心。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是圆的`标准方程,教学难点是圆的标准方程的探究过程。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用自主探究为主,辅以教师讲解、小组讨论等教学方法,层层递进进行展开。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  课堂伊始,为了铺垫用方程表示平面图形的思路,也为了帮助学生完善知识体系,我会带领学生简单回顾之前所学内容——在平面直角坐标系中用坐标、用方程的方法表示一些点、直线,由确定直线的几何要素推导出直线的方程。

  进而提出能不能在平面直角坐标系中表示其他图形。用大屏幕展示一些圆形物品,请学生举例更多圆形物品。然后提问:能否用方程的思想在平面直角坐标系中表示圆?由此引出课题。

  (二)讲解新知

高中数学说课稿10

  今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

  一、说教材

  1、教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

  2、学情分析

  本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

  教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1、知识与技能(1)理解函数的单调性和单调函数的意义;

  (2)会判断和证明简单函数的单调性。

  2、过程与方法

  (1)培养从概念出发,进一步研究性质的意识及能力;

  (2)体会数形结合、分类讨论的数学思想。

  3、情感态度与价值观

  由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

  重点:

  函数单调性的'概念,判断和证明简单函数的单调性。

  难点:

  1、函数单调性概念的认知

  (1)自然语言到符号语言的转化;

  (2)常量到变量的转化。

  2、应用定义证明单调性的代数推理论证。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

  (一)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

  (二)讲授新课

  1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

  通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

  2、观察函数y=x2随自变量x变化的情况,设置启发式问题:

  (1)在y轴的右侧部分图象具有什么特点?

  (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1< p="">

  (3)如何用数学符号语言来描述这个规律?

  教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

  (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

  类似地分析图象在y轴的左侧部分。

  通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1< p="">

  仿照单调增函数定义,由学生说出单调减函数的定义。

  教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

  (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

  (三)巩固练习

  1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

  练习2:练习2:判断下列说法是否正确

  ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

  ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

  1③已知函数y=,因为f(-1)< p="">

  1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

  上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

  (四)归纳总结

  我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

  (五)布置作业

  必做题:习题2-3A组第2,4,5题。

  选做题:习题2-3B组第2题。

  新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

高中数学说课稿11

  【教材分析】

  1.本节教材的地位与作用

  本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:"如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值",以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.

  2.教学重点

  会求闭区间上连续开区间上可导的函数的最值.

  3.教学难点

  高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.

  4.教学关键

  本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.

  【教学目标】

  根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

  1.知识和技能目标

  (1)理解函数的最值与极值的区别和联系.

  (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.

  (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.

  2.过程和方法目标

  (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.

  (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.

  (3)会求闭区间上连续,开区间内可导的函数的最大、最小值.

  3.情感和价值目标

  (1)认识事物之间的的区别和联系.

  (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.

  (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.

  【教法选择】

  根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.

  本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.

  【学法指导】

  对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

  【教学过程】

  本节课的教学,大致按照"创设情境,铺垫导入--合作学习,探索新知--指导应用,鼓励创新--归纳小结,反馈回授"四个环节进行组织.

  教学环节

  教学内容

  设计意图

  一、创设情境,铺垫导入

  1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数的最大值与最小值.

  如图,有一长80cm,宽60cm

  的矩形不锈钢薄板,用此薄板折

  成一个长方体无盖容器,要分别

  过矩形四个顶点处各挖去一个

  全等的小正方形,按加工要求,长方体的高不小于10cm且不大于

  20cm.设长方体的高为xcm,体积

  为Vcm3.问x为多大时,V最大?

  并求这个最大值.

  解:由长方体的高为xcm,可知其底面两边长分别是

  (80-2x)cm,(60-2x)cm,(10≤x≤20).

  所以体积V与高x有以下函数关系

  V=(80-2x)(60-2x)x

  =4(40-x)(30-x)x.

  2.引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.

  以实例引发思考,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,同时营造出宽松、和谐、积极主动的课堂氛围,在新旧知识的矛盾冲突中,激发起学生的探究热情.

  实际问题中,函数和自变量x范围的设置,都紧扣本节课的核心:确定闭区间上的连续函数的最(大)值.

  通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.提出问题后,引导学生发现,求所列函数的最大值是以前学习过的方法不能解决的,由此引出新课,使学生深感继续学习新知识的必要性,为进一步的研究作好铺垫.

  教学环节

  教学内容

  设计意图

  二、合作学习,探索新知

  1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

  问题1:如果是在开区间(a,b)上情况如何?

  问题2:如果[a,b]上不连续一定还成立吗?

  2.如图为连续函数f(x)的图象:在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?3.以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?

  归纳:设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值与最小值的步骤如下:

  (1)求f(x)在(a,b)内的极值;

  (2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的'一个是最小值.

  通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中.

  对取得最大值最小值的两种可能位置的结论,在高中阶段不作证明,为使学生形成更深刻的印象,更好地进行发现,教学中通过改变区间位置,引导学生观察各种区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.

  为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作.

  在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力.深化对概念意义的理解:极值反映函数的一种局部性质,最值则反映函数的一种整体性质.

  三、指导应用,鼓励创新

  例2如图,有一长80cm,宽60cm

  的矩形不锈钢薄板,用此薄板折

  成一个长方体无盖容器,要分别

  过矩形四个顶点处各挖去一个

  全等的小正方形,按加工要求,长方体的高不小于10cm不大于

  20cm,设长方体的高为xcm,体积

  为Vcm3.问x为多大时,V最大?

  并求这个最大值.分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最小,可用本节课学习的导数法加以解决.

  例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力.

  四、归纳小结,反馈回授

  课堂小结:

  1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值;2.求闭区间上连续函数的最值的方法与步骤;3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定.

  作业布置:P1391、2、3

  通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力.课外作业有利于教师发现教学中的不足,及时反馈调节.

  【教学设计说明】

  本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以"是否存在?存在于哪里?怎么求?"为线索展开.

  1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以"学生的发展为本"的基本理念.

  2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.

  3.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.

  4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻"教师为主导、学生为主体、探究为主线、思维为核心"的数学教学思想,引导学生主动参与到课堂教学全过程中.

高中数学说课稿12

  各位评委老师好:今天我说课的题目是

  是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

  一、 教材分析

  是在学习了基础上进一步研究 并为后面学习 做准备,在整个

  高中数学中起着承上启下的作用,因此本节内容十分重要。

  根据新课标要求和学生实际水平我制定以下教学目标

  1、 知识能力目标:使学生理解掌握

  2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

  3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

  观察勇于思考的学习习惯和严谨 的科学态度

  根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

  二、教法学法

  根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

  三、 教学过程

  四、 教学程序及设想

  1、由……引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的.问题情境中。

  对于本题:……

  2、由实例得出本课新的知识点是:……

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

  4、能力训练。

  课后练习……

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  五、教学评价

  学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应

  当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

高中数学说课稿13

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的.定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性。

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性。

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。

  三、 教学过程

  教学

  环节

  教 学 过 程

  设 计 意 图

  问题

  情境

  (播放中央电视台天气预报的音乐)

  满足在定义域上的单调性的讨论。

  2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。

  3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。

  4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

高中数学说课稿14

尊敬的各位考官:

  大家好,我是今天的xx号考生,今天我说课的内容是《单调性与最大(小)值》的第一课时《单调性》。

  新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  本节课选自人教A版高中数学必修1第一章《集合与函数概念》的第三节《函数的基本性质》第一小节《单调性与最大(小)值》的第一课时。本小节主要讲解的内容是函数的单调性以及最大、最小值的概念,本节课主要讲解增减函数的概念以及单调性。之前学生对于函数的概念已经进行了学习,本节课是在原来的基础上进一步巩固函数的概念,但是主要是针对性质的学习。并且为之后研究函数的性质、用函数的性质解决生活中的问题起到非常关键性的作用。所以本节课的学习对于学生至关重要。

  二、说学情

  接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象能力等已经发展的比较成熟。所以教学中,可以将更多的活动交给学生进行探究。还可以进行自主学习,提高各方面的能力。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  认识函数值随自变量的增大而增大(减小)的规律,由此得出增(减)函数的.定义。掌握用定义证明函数单调性的基本方法与步骤。

  (二)过程与方法

  在研究函数性质的过程中,通过自主探究活动,学习数学思考的基本方法,提高数学思维能力。

  (三)情感态度价值观

  感知从具体到抽象、从特殊到一般、从感性到理性的认知过程,养成良好的数学学习习惯。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:增(减)函数的定义。教学难点是:从图象升降的直观认识过渡到函数增减的数学符号语言表述;用定义证明函数的单调性。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节,大屏幕直接展示图1.3-1,并让学生通过对两个图象的观察,总结图象具有什么特点,根据学生对图象变化特点的表述,引出本节课研究的内容为《单调性》。

  这样通过函数的图象进行引入,既能够提高学生的学习兴趣,还能够为后面研究增减函数的抽象定义做铺垫,让学生对于函数的性质有比较直观的认识。

  (二)探索新知

  接下来是教学中最重要的探索新知环节,我主要分为以下几步。

  第一个内容是对“上升”、“下降”的直观认识。

高中数学说课稿15

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的.精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。

【高中数学说课稿】相关文章:

高中数学经典说课稿 08-09

高中数学说课稿06-07

高中数学说课稿01-12

关于高中数学说课稿02-07

高中数学说课稿(荐)07-06

高中数学说课稿(15篇)01-15

高中数学说课稿15篇01-13

高中数学《二项式定理》说课稿03-04

月考总结高中数学12-27