《比例的意义》教学设计15篇(热)
作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那么教学设计应该怎么写才合适呢?下面是小编收集整理的《比例的意义》教学设计,仅供参考,欢迎大家阅读。
《比例的意义》教学设计1
教学目标
1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
教学重点:在具体情境中理解比例的意义。
教学难点:运用比例的意义判断两个比能否组成比例,并能正确组成比例。
教学准备:教学课件。
教学过程:
(一)复习旧知识导入新课。
同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的`知识,比例的意义。
(二)探究新知识
1.初步理解比例的意义。
请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?
请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)
师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。
请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。
让一名学生在黑板上计算,其余学生写在练习本上。
提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)
根据这三个比,从中任意选两个比能不能组成一个等式。
让学生分别说出三个等式:0202
5:10/3=3/25:10/3=2.4:1.6
2.4:1.6=3/2=5:10/3=60:40 60:40=3/22.4:1.6=60:40
提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)
像这样的等式,叫做比例?
谁能用自己的话说一说什么叫比例?<学生
引导学生看课本40页教材上是怎样定义的?学生齐读。
教师板书:表示两个比相等的式子叫做比例。
在这句话中有哪些字或词最关键:两个比相等。
师:根据比例的意义让学生举一些比例的例子。
生:a:b=c:d或a/b=c/d
2.深化了解比例的意义
刚才我们通过计算发现,国旗长与宽的比值相等。
所以每两面国旗的长与宽可以组成比例。
除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:
师:根据学生汇报,将组成的比例板书。
宽:长=宽:长长:长=宽:宽
10/3:5=40:605:2.4=10/3:1.6
10/3:5=1.6:2.45:60=10/3:40 1.6:2.4=40:602.4:60=1.6:40
老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。
每两面国旗长与长的比可以和宽与宽的比组成比例。
(三)练习巩固
做一做。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。
(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。
意义:两个数相除叫做两个数的比。表示两个比相等的式子。
项数:两项四项
联系:比例是由两个比组成的。
(五)当堂训练:
(六)课堂总结:
今天我们学习了比例的意义,你有什么收获?
《比例的意义》教学设计2
教材分析
这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。
学情分析
1、本班现有学生92人,男生49人,女生43人。
2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。
3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。
教学目标
1、知识与技能:理解比例的意义,认识比例各部分的名称。
2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。
3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点和难点
1、掌握比例的意义。
2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
3、能根据一个比例写几个不同的比例。
教学过程
教学环节 教师活动 预设学生行为 设计意图
一、复习
1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?
2、怎样求比值?求下面各比的比值,你发现了什么?
20∶252.7∶4.56∶10生回答。
学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。
揭示
课题这节课我们在比的知识基础上,进一步学习新知识。
揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。
探究
比例的意义
1、课件出示
例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。
列表如下:
竹竿长(m)23...... 影子长(m)69......
2、你能写出多少个有意义的比?并求出它们的比值。
3、观察这些比,把能用等号连接的比用等号连接起来。
4、教师板书
3∶2=9∶6
2∶6=3∶9
强调:这些都是比例。
引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。
5、2∶9和3∶6能组成比例吗?你是怎么知道的?
6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”
1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。
2、学生试写:
2:3=6:9
2:6=3:9
3、学生合作探究:什么是比例?
4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。
1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。
2、让学生分享在主动参与、探究中获取知识的愉悦心情。
3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。
认识比例的各个项
1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。
要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。
介绍分数形式的`比例写法。
学生小组合作探究,找出3∶2=9∶6和2:6=3:9
的内项和外项。加深认识,学以致用。
五、巩固练习
1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?
2、说一说比和比例有什么区别。
3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。
4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?
5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?
1、学生独立完成。
2、汇报答题情况。
检测学生学习效果。
六、比与比例的区别
1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。
2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。
《比例的意义》教学设计3
一、教学内容:
《反比例的意义》是六年制小学数学(人教版)下册的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
二、学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
三、设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
四、教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力。
3.培养学生热爱数学的激情。
五、教学重难点:
教学重点:理解反比例的意义。教学难点:能正确判断成反比例的量。
六、教学流程:
(一)、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)师:从字面上看“反比例”与“正比例”会是怎样的关系?生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
设计意图:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
(二)、提供材料,组织研究1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)师:表2和表3中两个量的变化规律有哪些共性?(生答略。)师:这两个相关联的量叫做成反比例的量,它们的`关系叫做反比例关系。(完成板书。)师:如果用字母a和b表示两个相关联的量,用c表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]设计意图:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表
1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)5.学习例6师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
(三)、巩固练习,拓展应用1.基本练习。(略)2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
设计意图:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数
量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
(四)、总结
七、板书设计
反比例关系判断两个量x×y=k(一定)
八、教学反思
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
《比例的意义》教学设计4
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的`外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2、4:1、6=3/260:40=3/2
2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。
2、4:1、6=5:10/32、4;1、6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2、4X40=96在比例里,两个外项的积等于两
1、6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
《比例的意义》教学设计5
教学目标:
1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。
3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点:
教学重点:理解比例的意义和基本性质。
教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:
师生问好!
师:课前我们先进行一组口算练习,下面请##同学上台主持。
一、求比值
3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=
5 : 20= 8.8 : 1.1= 16 : 96=
二、化简比
4 : 5= 2 : 20=
32 : 4= 4 : 44=
15 : 25= 10 : 80=
师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分
(小组活动)
师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?
(学生回答)
师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?
(学生回答)
师:同学们真了不起,提出了这么多问题!
学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。
(小组活动)
师:哪个小组的同学愿意来汇报自主学习的内容?
生汇报:我来汇报……其他小组有什么评价或补充吗?
师评价
师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?
(生答)
师:我真为你们感到骄傲,想到了这么多不同的答案!
组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
说出老师指的这个数是比例的外项还是比例的内项?
(师指生齐说)
师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成
师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?
师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。
师:看来同学们学的真不错,其实,在比例的.2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示
(指1生读温馨提示)
(生合作探究)
师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。
(生汇报展示)
师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。
师:下面我们就用比例的基本性质解决拓展应用
生
师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?
(生谈收获)
师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》
师:下面我们进行达标检测
(生完成后)
师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。
(小组汇报)
师:全对的同学请举手,组员全对的奖励一颗小印章。
师:同学们这节课表现得真棒,继续努力,好,下课!
教后反思:
《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:
一、找准知识衔接点,为新知做好铺垫
比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。
二、相信学生利用导学案自学的能力,大胆放手。
课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。
三、从情境图入手,丰富资源
从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。
四、自主探索、合作交流、探究新知。
在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。
五、练习由易到难
每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。
根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。
每一次的课,总会有一些优点,但也发现了自己的一些不足:
一、采用多种评价方式
二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。
只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。
《比例的意义》教学设计6
教学目标
1.使学生理解并掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
教学重点
比例的意义和基本性质。
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程
一、复习准备。
(一)教师提问复习。
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值。
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接。
教师板书:4.5∶2.7=10∶6
二、新授教学。
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
class=Normal vAlign=top width=166>
时间(时)
class=Normal vAlign=top width=166>
2
class=Normal vAlign=top width=166>
5
class=Normal vAlign=top width=166>
路程(千米)
class=Normal vAlign=top width=166>
80
class=Normal vAlign=top width=166>
200
>
1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的'比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例。
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例。
(2)一个比例,等号左边的比和等号右边的比一定是( )的。
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(板书)
2.练习:指出下面比例的外项和内项。
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积。
5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整。
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
《比例的意义》教学设计7
教学内容:
义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的`基本性质。
教学步骤教师活动学生活动
一、复习引新
导入新课
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
学生练习
学生回顾判断两个比能否组成比例的方法
二、认识比例
探索规律1、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?
学生练习:找出比例中的内项和外项
6:5=36:30
4:7=21:49
学生自主表达,图中有哪些数据信息?
学生独立思考,再小组交流
学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()
学生分析哪两个数是外项,哪两个数是内项。
比较理解比例的基本性质
学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
拓展提高
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():6
4:()=():5
3、做练习十第1、2题学生尝试练习后交流讨论
先让学生尝试填写,再交流明确思考方法。
四、全课小结
总结反馈通过今天的学习,你有哪些收获?
把你发现规律的方法介绍给朋友、亲人。
五、课堂作业练习十3、4题
《比例的意义》教学设计8
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。
教学准备:多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式。
校园升旗仪式。
教室场景。
签约仪式。
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的`比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6=3/2。
60∶40=3/2。
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6=60∶40。
2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
⑵学生尝试说说什么叫比例。
⑶教学比例的各部分的名称。
自学课本第34页的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的名称。
学生说说自己写的比例的各项的名称。
⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
⑸判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
⑴6∶10和9∶15。
⑵20∶5和1∶4。
⑶1/2∶1/3和6∶4。
⑷0.6∶0.2和3/4∶1/4。
思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
⑴媒体出示
8∶4=()∶()15:10=()∶412∶()=()∶5。
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
⑵师提出问题:在一个比例中,它们项有什么特点?
⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。
⑷集体交流,发现性质。学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。
⑸观察自己写的其它几个比例,验证发现。
⑹小结性质。
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示。
应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
⑴6∶3和8∶5。
⑵0.2∶2.5和4∶50。
⑶1/3∶1/6和1/2∶1/4。
⑷1.2∶3/4和4/5∶5。
2、拓展练习。
比一比,谁写得多。
在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6=3/2
60∶40=3/2
《比例的意义》教学设计9
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的'函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
《比例的意义》教学设计10
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的'运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
《比例的意义》教学设计11
教学过程:
一、创设情境
近段时间,我们接触了大量的比,今天这节课,我们先来请每个同学在草稿本上任写三个比,并算出比值。
请一个同学读读他写的几个比。问:老师也写了一个比(大屏幕出示6:3),说说你的三个比中有没有可以和老师这个比做好朋友的?(说说理由)
每个同学找一找,你们有和老师比值相等的比吗?(教师板书)
同桌找一找,看哪一桌也找到了这样的一对好朋友?(教师板书)
二、学习探究比例的意义
1、观察黑板上的这几组比,有什么共同的特点?(比值相等)
因为它们比值相等,我们可以用等号对他们加以连接,(教师在黑板上板书)
2、师:像这样的等式,我们给它取了一个新名字——比例。谁能说说什么叫比例?
3、数学的语言是非常精练的,打开课本,看看课本中是如何定义的?(学生读,教师板书),教师阐述:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
4、大屏幕出示教师写的另一个比,6:4,谁能为它配上一个好朋友,并写成比例。
5、练习:出示例1(大屏幕)提问,这列火车两次行驶的时间不同,行驶的路程也不相同,但这两次有没有相同的地方?我们能不能这个根据速度相同,写出一个比例。(交流)
6、大屏幕出示课本中的试一试:下面哪一组的两个比可以组成比例。(手指表示)
7、师生小结:如果判断两个比能否组成比例,最关键是看什么?
三、学习探究比例的基本性质
1、比和比例有着密切的联系,你觉得它们有区别吗?
教师小结:“比和比例的意义不同,比例中有两个比,有四个数;比是一个比,有两个数,两个比值相等的比能组成比例。”
2、比有两个数,分别叫做比的前项和比的后项,那么比例的四个数也各有名字,叫什么呢?快速浏览课本67页,找到并读一读,然后把书合拢,看谁最先合拢课本?
教师检查学生对各部分名称的掌握情况,如果写成分数形式,还能说说各自的名称吗?
6:4=3:2 =
3 、探索比例的基本性质
(1)填数。老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?
(2)猜测。学生回答,教师在方框下面板书,如1和24,2和12,……追问:“你有什么发现?把你的发现悄悄地说给同桌听一听。”
(3)验证。大家猜测说“在比例中,两个外项的积等于两个内项的积”,是不是所有的比例都有这样的规律呢,还需要我们验证。
教师组织学生用黑板上的比例和各自写的比例进行验证。
(4)小结。其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。
(5)如果比例写成分数形式,这怎么相乘?
(6)应用比例的基本性质判断下面的比例是否正确?(大屏幕出示)
(7)小结:判断两个比能不能组成比例,既可以通过计算比值来判断,也可以根据比例的基本性质来判断。
大屏幕出示:用你喜欢的方法判断下面的比例是否正确?
四、巩固提升
1、猜猜我是谁?(大屏幕出示)
2、选择题:(大屏幕出示)学生用手指表示正确选项的序号
3、(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)
谁能说出老师的秘诀?
(2)现在轮到我考你:3、4、6、8 4、6、7、9
(学生回答后让他说出判断理由)
(3)请你独立用3、4、6、8写比例,然后小组交流讨论,把最好的'办法推荐给大家。
4、同学们知道,在一天的同一时间内,物体越高它在太阳下的影子也就越长,你能运用今天学习的比例知识,想办法算出我们学校旗杆的高度吗?
五、全课小结。
谁能整理一下,这节课我们学习了哪些知识?
六、布置作业
教学目标:
1、使学生理解并掌握比例的意义和基本性质,认识比例的各部分的名称。学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的自学能力、观察能力、判断能力及合作探究能力。
3、经历比例的意义和基本性质形成的过程,体会分析比较、归纳概括、验证的思想方法。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
《比例的意义》教学设计12
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。
教学准备:多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式
校园升旗仪式
教室场景
签约仪式
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的'象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6 =3/2
60∶40=3/2
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40
2、认识比例,知道比例各项的名称。
(1)学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
(2)学生尝试说说什么叫比例。
(3)教学比例的各部分的名称。
自学课本的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的名称。
学生说说自己写的比例的各项的名称。
(4)教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
(5)判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
(6)6∶10和9∶15 (7)20∶5和1∶4
(8)1/2∶1/3和6∶4 (9)0.6∶0.2和3/4∶1/4
(10)思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
(1)媒体出示
8∶4=()∶() 15:10=()∶4 12∶()=()∶5
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
(2)师提出问题:在一个比例中,它们项有什么特点?
(3)学生观察以上式子,自主思考,尝试发现比例的基本性质。
(4)集体交流,发现性质。
学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。
(5)观察自己写的其它几个比例,验证发现。
(6)小结性质
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示
应用比例的基本性质,判断下面哪组中的两个比可以组成比例
(1)6∶3和8∶5 (2)0.2∶2.5和4∶50
(3)1/3∶1/6和1/2∶1/4 (4)1.2∶3/4和4/5∶5
2、拓展练习。
比一比,谁写得多。
在这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6 =3/2
60∶40=3/2
《比例的意义》教学设计13
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。
【教学目标】
1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。
3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。
【教学重点】比例的意义。
【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。
【教学准备】多媒体课
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例?
表示两个比相等的式子叫做比例。
2、今天是星期天,小瑜和小丽一起到文具店去买东西。
(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?
(2)反馈:
①谁买的本子便宜些?说说你的理由。
②还有别的方法吗?
③这两个比能组成比例吗?为什么?
二、关键点拨
1、比例的意义。
出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?
2、小结:判断两个比能否组成比例,最关键是看什么?
3、比和比例有什么区别?
生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
三、巩固练习
1、下面哪组中的'两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。
2、独立完成“做一做”第2题后反馈交流。
3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
反馈:
(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
反思与体会:
在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。
《比例的意义》教学设计14
教学内容:
人教版六年级下册《比例》
教学目标:
1、知识目标:理解比例的意义,能正确判断两个比能否成比例,会组比例。
2、能力目标:通过探索国旗中蕴含的数学知识,提高认知能力。
3、情感目标:体验获得成功的乐趣,建立学好数学的自信心。
教学重难点:
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
教学工具:
多媒体课件
教学过程:
一、回顾旧知,复习铺垫
同学们,今天我们开始学习新的单元比例,看到这两个字你有没有联想到一些我们学过的知识呢?(比)上学期我们学过比的相关知识,现在大家回想一下:
(一)复习
1、什么叫做比? (表示两个数相除)
2、你能举例说明比的各部分名称吗?
比包括前项、后项和比值,比值就指的是比的前项除以后项所得的商,比值是一个数。
3、请你计算下面各比的比值。
2:16 2.7:4.5
(二)谈话导入
大家对比的知识掌握得很好,接下来我们就进入比例的第一课时比例的意义的学习,首先需要明确本节课同学们的学习目标。请读记一遍:
1、理解和掌握比例的意义。
2、能根据比例的意义正确判断两个比能否组成比例并会组比例。
3、探索国旗中蕴含的数学知识,增强爱国精神。
二、比较分析,探究新知
同学们,每周一早上我们学校会举行升国旗仪式,对于国旗你了解多少呢?
(一)观察
观察这三幅情境图,它们有什么相同之处呢?(都有国旗)分别在什么地方?(xx广场、校园的操场和教室里。)
这些国旗有大有小,长宽不同(点击PPT出示数据),但通过观察我们学校操场和教室里的国旗发现它们的形状都是相似的,都接近这样的一个长方形国旗(点击PPT出示图片),看上去庄严和谐统一。那你有没有见过这样的.国旗呢?这说明我们的五星红旗的长与宽一定隐含着某种特点,想弄明白吗?
(二)计算
1、我们先来看看学校里的两面国旗的长和宽的比值有什么关系?(点击出示图片文字)
(1)请同学们在练习本上写出操场与教室的国旗的长与宽之比,再计算出它们的比值。(计算要保证准确)
32.4:1.6?2.4?1.6?(1.5)(2)指名汇报:操场上的国旗 23(1.5)2描述:操场上的国旗长宽之比为2.4:1.6,比值为3/2….(2名学生描述)(板书) 教室里的国旗
60:40?60?40?(3)同意他们的结果吗?通过计算你能发现什么吗?(这两幅国旗的长宽虽然不同,但长宽之比都是3/2,是相等的。)(板书等式)既然两个比的比值相等,可以用什么符号把这种关系表示出来?(=)(板书不同颜色)
(三)讲解
1、其实不光这三面国旗,在国旗法中规定所有国旗都必须按长与宽的比3/2来制作,而且也只有指定企业才能制作,这是对国旗的尊重!
2、那谁来说一说像这样的一个式子表示了什么?(表示两个相等的比;表示两个比值相等的比)你们都说出来了重点(板书:比相等)。在数学中,像这样(板书:表示两个比相等的式子叫做比例)。这就是比例的意义。同学们读记一遍。比可以写成分数形式,那比例的呢?(板书)
三、合作探究,提升理解
(一)小组讨论,代表发言
探讨一:判断两个比能否组成比例,关键是什么?(各组的看法是什么?根据比例的概念可知)
探讨二:你还能从三面国旗中找出哪些比例?(代表发言,xx的国旗长宽之比为5:10/3,比值为3/2,所以还可以找出其他的。) 探讨三:比和比例是一样的吗?如果不是,两者有什么区别? (结合同学的回答,可以从两个角度来区分,形式上,意义上。)
四、巩固应用,提升能力
对于比例,现在已经有了初步认识,接下来就让我们学以致用。 首先我们观察做一做的两道题,可以发现一道关于数的比例,一道关于形的比例,那我们就从这两个方面去理解比例。先独立完成第一题。
(一)数的比例
(出示习题和答题规范,提问两组同桌,2分钟完成,订正答案2分钟。出示答案,对板演,对台下答案)
(二)形的比例
先观察图形并结合数据,分析边长之间的关系,找出比例。
一组同桌上台展示,讲解:图中有一大一小两个直角三角形,观察每个三角形两条直角边的数据可得出,每个三角形各自的直角边之比相等;而且两个三角形短直角边之比等于长直角边之比。因此一共能找出8对比例。
(三)综合提升
写出比值是5的两个比并组成比例。(提问多名学生汇报)
五、拓展
喝过蜂蜜水吗?你会调制吗?下图是调制蜂蜜水时蜂蜜和水的配比情况。怎样调配的呢?(蜂蜜水A用两杯蜂蜜和10杯水调配,蜂蜜水B用3杯蜂蜜和15杯水调配)
哪种更甜呢?你能用今天所学知识判断出来吗? 同桌或小组讨论,点名:
学生甲:A和B两种蜂蜜水中蜂蜜比是2:3,水的比是10:15,两个比的比值都是2/3 ,所以我们认为两种蜂蜜水一样甜。
学生乙:蜂蜜水A的水和蜜的比是10:2,蜂蜜水B的水和蜜的比是15:3,两个比的比值都是5,我们认为两种蜂蜜水一样甜。
其他同学的想法呢?看来你们很善于动脑筋,这些题都没有难倒你们,但同学们在学习中依然要谦虚努力。
六、总结
今天的学习就结束了,相信大家都有自己的收获。孔子有句话说,“学而不思则殆”。所以课后大家独立主动地梳理今天所学知识,形成思维导图,并与同学交流。
《比例的意义》教学设计15
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2。说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的'变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2。归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
【《比例的意义》教学设计】相关文章:
《比例的意义》教学设计05-29
比例的意义教学反思10-01
比与比例教学设计12-17
反比例意义教学反思02-25
《反比例意义》教学反思 12-17
《比例的意义》教案02-28
比例的意义说课稿06-14
分数的意义教学设计 分数的意义教学设计06-11
正比例教学设计05-11
《比例尺》教学设计06-26