《因数与倍数》教学设计

时间:2024-07-15 18:17:15 教学设计 我要投稿

《因数与倍数》教学设计

  在教学工作者开展教学活动前,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。怎样写教学设计才更能起到其作用呢?以下是小编收集整理的《因数与倍数》教学设计,仅供参考,欢迎大家阅读。

《因数与倍数》教学设计

《因数与倍数》教学设计1

  教学内容:

  人教版小学数学第十册教材12-13<<因数和倍数>>

  教学要求:

  1、 通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。

  2 、通过学生合作学习,让学生掌握找一个数的因数的方法。

  3、 培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。

  4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。

  教学重点:理解因数和倍数的意义

  教学重点:掌握找一个数因数的方法

  教学过程:

  一 、创设情境,引入新课

  师:同学们,你们喜欢唱歌吗?

  生:喜欢。

  师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?

  生:(可以)生唱。

  师:谁愿意介绍一下自己妈妈姓什么吗?

  生:我妈妈姓马。

  师:我们叫她马阿姨可以吗?

  生:可以。

  师:你能用马阿姨和陈果说一句话吗?

  生:马阿姨是陈果的妈妈,陈果是马阿姨的儿子。

  师:能不能单独的说马阿姨是妈妈,陈果是儿子?

  生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。

  师:其实在数学中也有这样的两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。

  师:板书因数和倍数。请同学们齐读课题。

  生:齐读课题

  师:读了课题你想知道什么?

  生1:想知道因数和倍数的意义。

  生2:怎样找一个数的因数。

  生3:怎样找一个数的倍数?

  ........

  师:这些问题是老师告诉你们,还是你们自己去学习?

  生:我们自己学习。

  【评析:用学生最熟悉的歌创设情境,既激发了学生的兴趣,又拉近了师生之间的距离,创设了一个宽松、和谐的氛围,以此从熟悉的母子或父子关系出发,让学生理解了相互依存的关系,为理解倍数和因数的相互依存关系作铺垫,体现了数学来源与生活。】

  二、自学引导

  1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一

  2 、检测自学情况

  (一)、填空

  (1) 3×4=12

  3是12的( ) 4也是12的( )

  12是3的( ) 12也是4的( )

  2×6=12

  2和6是12的( ) 12是2和6的( )

  1×12=12

  1和12是12的( ) 12是1和12的( )

  12的因数有:( )

  (2) a×b=c (a、b、c均为非零自然数)

  a是c的( ) b是c的( )

  c是a的( ) c是b的( )

  (二)、判断

  (1)、因为0.8×5=4 所以0.8是4的因数。( )

  (2)、因为3×6=18 所以18是倍数,3和6是因数。( )

  (3)、因为24÷6=4所以24是6的倍数,4是24的因数。

  (生自学并完成学案一,师指导)

  师:有谁愿意把你的学习作品展示大家。

  生:展示学习作品。

  师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。

  师: 在 a×b=c 中, 为什么a、b、c均为非零自然数?

  生:为了方便,我们研究因数和倍数只是整数(不包括零)

  师:请同学齐读这句话。

  生:齐读

  师:因为0.8×5=4 所以0.8是4的因数。( )这句话对吗?

  生:不对,因为0.8是小数不是整数。

  师:因为3×6=18 ,所以18是倍数,3和6是因数。( )这句话对吗?

  生:不对,因为因数和倍数是相互依存的,是不能单独存在的。

  师:因为24÷6=4所以24是6的倍数,4是24的因数。

  生:对

  师:请读 a×b=c (a、b、c均为非零自然数)

  a是c的( 因数 ) b是c的( 因数 )

  c是a的(倍数 ) c是b的( 倍数 )

  生:齐读。

  师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?

  生:会

  师:我们试试行吗?

  生:行

  师:来个大的,还是小的。

  生:来个大的。

  师:30可以吗?

  生:可以

  师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。

  生:有

  师:那好,你们4人小组合作找出30的因数,并完成学案二。

  【评析:把课堂留给学生,让学生通过自学完成学案,体现了学在前,老师指导在后,充分让学生独立思考,获取知识。这样通过自学----完成学案---适时指导,让学生真正成为学习的主人,理解因数和倍数的意义。】

  三 、合作学习探究找一个数因数的方法

  1 、小组合作找出30的因数有哪些?(有乘法和除法两种,用你们最喜欢的方法)。再组内讨论以下三个问题

  ( )×( )=( )

  ( )×( )=( )

  ( )×( )=( )

  ( )×( )=( )

  ........

  30的因数有:( )

  ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  ........

  30的因数有:( )

  (1)你们是怎样找一个数的因数的?

  (2)你们找一个数的因数是怎样才能做到既准确,又完整的?

  (3)你们找一个数的因数是找到什么时候为止?

  2、小组汇报

  生1:30的因数有(1 2 3 5 6 10 15 30)

  师:你是怎样找一个数的因数的?

  生1:1×30=30找到1 30

  2×15=30找到2 15

  3×1030找到3 10

  5×6=30找到5 6

  生2::30÷1=30找到1 30

  30÷2=15找到2 15

  30÷3=10找到3 10

  30÷5=6找到5 6

  ........

  生5:从1开始去乘一个数等于30的两个数就是30的因数。

  生6:用30除以1到它本身能整除的就是30的因数。

  生7:从1开始有序成对找到重复或接近为止

  3 、引导学生总结找一个数因数的方法

  从1开始用乘法或除法有序成对的`找,找到重复或接近为止。

  【评析:找一个数的因数级发及发现归纳其特点,教师让学生通过小组合作,相互评价,培养学生的合作意识,发挥学生的合作能力,归纳出找一个因数的方法,充分体现了学生是主体。】

  四、目标检测

  1、 找36、28的因数

  (采用师生对口令方法,强调重复写一个)

  2、先找出下列各数的因数,再观察这几组数据你有什发现写在括号里。

  8的因数有:( )

  11的因数有:( )

  15的因数有:( )

  24的因数有:( )

  你的发现是( )

  3你的学号是( )

  你学号的因数有( )

  学生完成后展示学习作品并汇报

  生1:我发现了每个数的因数都有1。

  生2::我发现了每个数的因数都有他本身。

  ........

  生6:我发现了一个数的因数最小是1,最大是它本身。

  生7:我发现了一个数的因数的个数是有限的,因为一个数的因数最小是1,最大是它本身

  生齐读一个数的因数最小是1,最大是它本身。一个数的因数的个数是有限的。

  4、游戏:

  师:学号是25的因数的同学请起立。

  学号是48的因数的同学请起立。

  学号是18的因数的同学请起立。

  1号你为什么不坐下

  生:因为1是所有自然数的因数,坐下了还要起立。

  师:同学们想挑战老师吗(想)比老师叫起立的人多。

  生1:30的因数

  生2:学号有两个因数的请起立。

  生3:学号有三个因数的请起立。

  ........

  生7:学号有因数1请起立。

  生8:学号因数最大是自己学号的请起立。

  【评析:找一个数的因数,归纳发现找因数的方法并不是难事,而对“一个数最大因数是它本身,最小因数是1”的理解有一定难度。教师在让学生做练习的同时发现规律,同时通过游戏加深了对知识的理解,在游戏中体会数学的乐趣。实现了巧练、活练,真正把数学运用于生活。】

  五、总结反思

  1、这节课你有什么收获?

  2、如果还有不懂的小组内讨论。

  【总评析:本节课总的可用六个字来概括,“引拨补、疑思用”师,即,教师:引——拨——补;学生:疑——思——用。学生通过自学,教师引导,产生疑问,在教师的指引下进行小组合作探究、分析、领悟,再加上教师的点拨,让全体学生进行反思、掌握学法、建构数学模型,找一个数的因数的方法,让学生从感性认识——理性认识——实践运用——拓展提高,经历了学习数学的过程,真正体会了学习数学的乐趣。本节课“虽已毕,但趣犹在”,留给我们回味的很多。】

  板书设计:

  因数和倍数

  30的因数有:1 2 3 5 6 10 15 30

  有序 成对 准确 完整

《因数与倍数》教学设计2

  教学目标:

  1、依据倍数和因数的含义和已有的乘除法知识,自主探索总结找一个数的倍数和因数的方法.

  2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。教学重点:理解因数和倍数的含义.教学难点:自主探索并总结找一个数的倍数和因数的方法.教学过程:

  一、情境激趣。

  脑筋急转弯:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?

  教师说明:人和人之间的关系是相互依存,数和数之间也是相互依存的。揭题:

  二、初步认识倍数和因数。

  1、创设情境。

  用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。

  学生汇报拼法,教师依次展示长方形的拼图,并板书:

  4×3=1

  26×2=12

  12×1=12

  教师根据4×3=12揭示:4×3=12

  12是4的倍数,12也是3的倍数,4和3都是12的因数。提出要求:你能用倍数和因数说一说6×2=12

  12×1=12吗?

  2、深化感知。

  (1)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?

  教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

  三、探求一个数的倍数。

  1、设疑。

  在刚才的学习中,我们知道了3的倍数有

  12、18。除了

  12、18还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。

  2、交流。

  揭示“有序”,为什么要有序地写倍数呢?全班讨论:“你是怎么写3的倍数的?”。

  3×

  13×

  2 3×

  3……

  3

  3+3

  6+3

  ……

  一三得三二三得六三三得九

  引导学生讨论得出:用依次×

  1、×

  2、×3……写出3的倍数。

  3、深化:请写出2的倍数,5的倍数。

  4、引导观察,发现规律。

  小组讨论:观察这三道例子,你有什么发现?全班交流,概括规律。

  5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。

  四、探求一个数的因数。

  1、设疑。

  刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。

  请写出36的所有因数,

  2、组织讨论。

  你是怎么找36的因数的?

  ( )×( )=36从一道乘法算式中可以找到2个36的因数,6×6=36呢?

  36÷( )=( )从一道除法算式中也可以找到2个36的.因数。

  3、讨论“多”。问:写得完吗?你可以按照什么顺序写?

  师动画演示36的因数(从两端往中间写),同时指出:当两个因数越来越接近时,也就快要写完了。

  4、巩固深化。

  请写出15的因数,16的因数。学生练习后组织评讲。

  5、引导观察,发现规律。

  问:通过观察这三道例子,你能发现什么规律?

  6、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。

  五、巩固拓展。

  1、快乐大转盘

  2、猜数游戏。

  六、老师总结:利用微课对整节课做一个总结。

  七、学生总结:在这节课的学习中,有哪些地方给你留下了深刻的印象?

  集体研讨发言稿

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数和因数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。

  一、设疑迁移,点燃学习的火花。

  良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

  教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:“怎么停下来了呢?”、一声惊讶:“哦!写不完呀?”、一句激励:“能想出办法吗?”。看似教师“怠工”的预设,是为了学生“越位”的生成

  二、渗透学法,形成学习的技能。

  由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我设计了尝试练习引出冲突讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加

  3、依次乘

  1、

  2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

  三、活用教材,拓展学习的深度。

  教材中安排36÷()=()这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助()×()=36来寻找一个数的因数。

  课尾,我设计了一两个游戏,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。

  纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。

《因数与倍数》教学设计3

  教学内容:教科书12---16页的学习内容

  教学目标

  通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

  教学重点:因数与倍数的对比。

  教学难点:用准确语言表达。

  教学准备:实物投影

  教学活动

  (一 )基础训练

  【口答】

  下面的说法对码?如果不对,请改正。

  (1)32÷4=8,所以42是倍数,4是因数

  (2)12的因数只有2、3、4、6、12

  (3)1是1,2,3,…的因数

  (4)60的最大因数和最小倍数都是60

  (5)5一共有10000个倍数

  (6)一个数的倍数一定大于它的因数

  【解答题】

  因数能否数完?倍数呢?

  (二) 新知学习

  【典型例题】

  1.分别找出16的因数和倍数

  2.仔细想想,找出16的所有因数和倍数的感受相同码?

  2.填表。

  不同方面联系

  意义寻找方法能否找完有无最大与最小表示

  因数

  倍数

  (三) 巩固练习(10题)

  【基础练习】

  1.选择正确答案的序号填在括号内。

  (1)下面算式中能表示63是7的倍数的算式是()

  ① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

  (2)9的因数有( )个

  ① 2 ② 3③ 4

  (3)不能够表示出“倍数”与“因数”关系的算式是()

  ① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

  【提高练习】

  1. 按要求写数

  6的倍数(写出5个) 32的所有因数 120的所有因数

  2.练一练第7题。

  教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

  通过本题计算在月球和火星上的体重,激发学生的`好奇心,进行保护地球的环保教育

  3.填表。

  (1)48个同学表演团体操,把队伍的排列情况填写完整。

  排数123456789

  每排人数4824

  每排都是48的因数码?

  (2)乘坐碰碰车每人应付8元,你能把表填完整码?

  乘坐人数12345……

  应付元数816

  【拓展练习】

  1.填数。

  2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

  向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

  (五)教学效果评价(小测题2—3题)

  1.24的因数有哪些?

  2.36是哪些数的倍数?

  课后反思:

  通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

《因数与倍数》教学设计4

  一、本元单知识框架

  二、本单元学习内容的前后联系

  三、与本单元相关知识的学习情况分析

  这届学生,我是从五年级开始任教的。要是说对他们十分了解,自然是不太可能的,毕竟我们相处的时间是相对较短的。虽然如此,我对他们还是有一个学期的教学了解,多少能说出点关于对他们的学习情况,不论准确与否。

  根据我在上学期的教学零散了解,学生在整数四则运算方面没有多大的问题,主要是一些计算的准确率还没有达到一定目标,有些看似简单的计算如18×2=32,不知是出于什么原因,学生就是算错。当然,计算错,不一定就说明学生不会计算,有可能又是一个“一不小心!”。尽管分析是如此,事实存在的一些非本质性计算问题,多少会影响现在的这个单元的学习的。

  为了使学生能顺利学完并努力做到学好这个单元的知识,一方面加强要加强克服前阶段关于学习上存在的一些不足;另一方面要扎扎实实地学好这个单元的知识,为今后学习与之相关内容打下不敢说是牢固、但可说是踏实的基础。

  四、本单元教学目标

  1.理解因数、倍数、质数、合数这些数的概念,能用概念进行相关语句的判断并学会求这些数的方法

  2.经过自主探索,掌握2、3、5的倍数的`特征,能用特征进行相关语句的判断

  3.通过本单元学习,进一步培养学生的数学抽象能力

  五、本单元教学重点、难点

  教学重点:学生对因数、倍数、质数、合数等一些抽象概念的理解以及2、3、5的倍数的特征探索过程

  教学难点:学生对因数、倍数、质数、合数等一些抽象概念的理解

  六、本单元评价要点

  1.能否理解因数、倍数、质数、合数这些概念、是否会用他们进行一些简单的判断

  2.有没有掌握2、3、5倍数的特征,是否能根据三个数的特征解决一些实际问题

  3.观察学习数学热情是否得到增强!

  七、各小节教学目标及课时安排

  本单元计划课时数:11节

  教学内容教学目标计划课时授课日期

  因数和倍数的意义1.理解因数和倍数的意义,知道因数可数、倍数无法数、分清一组因数中最大是什么?、若干个最小倍数中最小是什么?

  2.掌握如何求一个数的因数和倍数方法并能做到熟练、完整,掌握有序的表达形式和常见的几种方式。如:一一列举、集合圈、线段图等。

  3节课

  2、3、5的倍数的特征1.通过自我探究,掌握2、3、5的倍数特征

  2.能用三个数的特征解决实际问题3节课

  质数、合数和11.理解并掌握质数、合数和1的概念,掌握他们之间区别。熟练判断出100以内的质数

  2.知道两个质数相乘的积是合数。反之,合数也可以分解两个或两个以上的质数。掌握一般分解方法以及横竖式的表达形式

  。2节课

  单元测试及分析留待教学测试后填写

  3节课

  合计15节课

  八、各课时教学设计

  第一节《因数和倍数意义》教学设计

  (课标人教实验教科书12---16页的学习内容)

  一、教学目标

  1.理解因数和倍数的意义,分清现在所学因数与以往乘法学习中因数的区别;

  2.通过不完全列举一个数的因数和倍数,让学生初步感受因数是可数的,自然得出因数的个数是有限的;而倍数是无法写完全,也就是说倍数的个数是无限的。是否存在最大和最小的问题。

  3.初步学会求一个数的因数和倍数方法。

  4.经历学习后,使学生初步感受原来学习的看似简单的整数乘法居然有如此大的深藏奥秘,激发学生进一步想学习它的热情!

  二、教学重点、难点

  1.教学重点:对因数和倍数意义的理解和运用性判断。

  2.教学难点:完整地表达数之间的因数和倍数关系

  三、预计教学时间:1节

  四、教学活动

  (一)基础训练

  【口算】2×6=1×18=2×15=()×()=24()×()=30

  3×4=2×9=1×30=()×()=24()×()=30

  1×12=3×6=5×6=()×()=24()×()=30

  3×10=()×()=24()×()=30

  【解答题】请你用一句话小结上面四组口算题(根据自己的学生说的)

  (二)新知学习

  【典型例题】

  1.请你说说下面两组计算,有什么相同和什么不同?(引入因数和倍数的前提学习条件)

《因数与倍数》教学设计5

  复习内容:公因数和公倍数。

  复习目标:通过复习,能又快又准地找出两个数的最大公因数和最小公倍数,并能运用所学知识解决实际问题。

  复习重点:又快又准的找出两个数的最大公因数和最小公倍数。

  复习难点:运用所学知识熟练的解决生活中的数学问题。

  复习过程:

  一、谈话引出课题

  1、这一单元,我们学习了什么?(生答)

  今天我们一起复习公因数和公倍数。(揭题)

  2、现在,你知道了哪些有关公因数和公倍数的知识?(小组讨论→全班交流)

  二、解答实际问题

  1、我们已经学会了好几种求最大公因数和最小公倍数的方法,你最喜欢哪种方法,为什么?(又快又准)

  下面我们就用短除法求最大公因数和最小公倍数(24和36)。

  2、谈话:有些最大公因数和最小公倍数一眼就能看出,你想试一试吗?

  找出每组数的最大公因数和最小公倍数。

  8和16()27和9()

  13和39()51和17()

  问:你们为什么这么快就能找出它们的最大公因数和最小公倍数?

  3、找出下面每组数的最大公因数和最小公倍数

  16和1()5和7()

  11和8()9和10()

  问:通过练习,我们又发现了什么?

  4、你能说出下面每个分数中分子与分母的最大公因数吗?

  14/21()35/45()22/33()80/90()

  5、说一说每组分数中两个分母的最小公倍数。

  2/3和4/73/5和9/105/9和5/67/8和11/12

  6、判断:

  1、3和5没有公因数。()

  2、a = 4b(a、b都是整数)a和b的最大公因数是b。()

  3、30是3和10的倍数。()

  4、两个数的最小公倍数一定比这两个数都大。()

  5、如果两个数的最大公因数是1,那么最小公倍数一定是它们的乘积。()

  三、解决生活问题

  谈话:我们学习数学,就是为了用数学方法解决生活中的'问题,现在老师带来了一些生活中的数学问题,大家想挑战吗?

  1、长途汽车站每隔8分钟向a地发一辆车,每隔10分钟向b地发一辆车,这两趟车早上7:00同时发车,第二次同时发车是什么时候?

  问:解决这个问题,实际上就是求什么?

  2、一篮鸡蛋,5个5个地数,6个6个地数,都少了2个,这篮鸡蛋至少多少个?

  3、有一种长方形地砖,长6dm,宽4dm,至少取多少块才能拼成一个正方形?

  4、有两根长分别是32cm和40cm的木条,把它们锯成同样长的小段(每小段都是整厘米数),并没有剩余,每小段最长是多少?

  问:读了这道题后,你认为哪些地方要引起大家注意?

  5、把一块长20cm宽15cm的长方形红布,剪成边长是整厘米数且面积尽可能大的相等的正方形,一共可以剪多少个?

  6、思考题:

  李老师把25本练习本和15支铅笔,分别平均分给一个组的同学,结果练习本多了1本,铅笔少了1支,你知道这组最多有几个同学吗?

  四、交流新的收获?

  五、作业:完成《补充习题》

《因数与倍数》教学设计6

  一、教学背景分析:

  教材分析因数和倍数是人教版第十册第二单元的起始课。教材不再以“整除”概念为基础引出因数与倍数,而是利用摆小飞机队形这一直观教学的基础上,借助整除的模式na=b,直接引出因数和倍数的概念并理解这二个概念,对于后面的学习起到承上启下的重要作用。

  学情分析学生对“因数和倍数”的名称并不陌生。学生可能会将乘法和除孤立开来,不能沟通联系,往往认为“乘法中有因数,除法中有倍数”。学生还有可能受前认知的干挠,往往把倍数认识是二年级的“倍的认识”,而不是“整除条件下的倍数”。学生对整除中因数和倍数的认识是模糊的,甚至是混乱的。教学目标通过动手操作,认识和理解“倍数和因数”,发现并掌握寻找一个数的因数和倍数的方法,体会一个数的倍数和因数之间的相互依存关系。经历“活动建构”和“自主探究”的过程,发展学生的数感,培养思维的有序性。让学生体会数学的奇妙、有趣,产生对数学的好奇心。教学重点:

  理解因数和倍数的意义以及相互依存的关系。掌握找一个因数和倍数的方法。教学难点:

  理解因数和倍数的意义以及相互依存的关系。

  教学过程:

  依托原有认知活动中建构概念。

  1、建立因数和倍数的概念。

  五年级4个班同学参加国庆活动分班训练。每班要排成4路纵队,每队人数相等,可以怎样站队呢?这4个班的人数分别是:18、20、24、28人。(用圆片摆一摆)

  (1)汇报学生摆一摆的情况和结果。

  (2)你能试着说一说20、24、28与4之间有什么关系吗?

  生:20是4的倍数,24是4的倍数,28是4的倍数,4是20的因数,4是24的因数,4是28的因数。

  为什么不选18呢?生:18不是4的倍数,4也不是18的因数。

  (4)18是谁的倍数呢?用圆圈代表一个人,这18个人可以怎样站队?请你摆一摆,小组长汇报。师板书:

  18×1=18 2 ×9=18 3×6=18

  18=18×1=2×9=3×6

  18÷1=18 18÷2=9 18÷3=6

  师:你能说出18与1、2、3、6、9、18有什么关系吗?

  生:1、2、3、6、9、18是18的因数,18是1、2、3、6、9、18的倍数,它们是互相依存的关系。

  师:判断下列算式,哪个算式是整除,哪个不是,谁是谁的因数,谁是谁的倍数?

  (1)12×0.5=6

  (2)24÷0.6=4

  (3)28×2=56

  (4)28÷7=4

  (5)32÷6=5……2

  (6)1.8÷0.9=2

  (7)4×3=12

  (8)3×0=0

  生:(3)、(4)、(7)是整除,其余的不是整除。2和28是56的因数,56是2和28的倍数……

  师:其余的为什么不是呢?

  生:它们有的是小数和0或不能除尽,整除只研究非零整数。

  巩固因数和倍数的认识:从3、5、18、36、20中任选两个数,说一说谁是谁的因数,谁是谁的倍数?(为了处理因数和倍数相互依存关系)

  自主探究,在对话中生成方法。1、20、24、28除了4以外,还有其他的因数吗?

  生:有。20的因数有:1、2、4、5、10、20。

  24的因数有:1、2、3、4、6、8、12、24。

  28的因数有:1、2、4、7、14、28。

  2、20、24、28都是4的倍数,4还有其他的倍数吗?

  生:有。4的倍数是:4、8、12、16……

  因数和倍数有什么特征?生:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数,因为自然数的个数是无限的。(师板书。)

  反馈巩固练习,应用中体会奥秘。基本练习。

  (1)5是因数,30是倍数。()

  一个数的倍数一定比它的因数大。()下列哪个算式中的数具有因数和倍数的关系()3+6=9 4×3=12 2.6÷2=1.3 20—14=6

  下面各数中,因数的个数最多的是()19 22 60 85 97 100

  拓展练习。找出6、28的因数及各自的倍数,根据因数的情况介绍完美数,体会人类对数的探索无止尽。找出220、284的因数,认识相亲数,感受数与数之间的美妙规律。课堂总结,梳理知识,提升认识。师:这节课你们有什么收获?你对数有了哪些新的认识?

  板书设计:

  20÷4=5 24÷4=6 28÷4=7 20、24、28是4的倍数

  4 ×5=20 4 ×6=24 4×7=28 4是20、24、28的因数

  18×1=18 2×9=18 3×6=18

  18=18×1=2×9=3×6

  18÷1=18 18÷2=9 18÷3=6

  一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数的'个数是无限的,最小的倍数是它本身,没有最大的倍数,因为自然数的个数是无限的。

  6的因数:1、2、3、6。 6=1+2+3 6是完美数

  教学反思让学生在动手操作中,初步认识概念。以往的教学,在揭示概念的过程中,大多是以严格的定义形式,以教授为主,在大量反复练习中加深对概念的理解。本设计突出了在揭示概念的过程中,帮助学生借助直观操作建立模型,理解概念。体会因数与倍数的关系。

  让学生在对比交流中,深化理解概念。教材中只是用12个小飞机拼摆来帮助学生认识整除,因数和倍数感觉浅显。本设计对教材进行了合理的改编,让学生对4个数据(18 20 24 28)的拼摆认识因数和倍数,加深对“整除、因数和倍数”的理解。在18与其他数据的对比中,深化理解什么是整除。

  让学生在拓展训练中,体会知识的奥秘。这节课对“因数与倍数”理解的基础上,通过拓展练习找因数,加强了基础技能的训练,又让学生感受到数与数之间的神奇,激发起学生对数学的好奇。感受到知识的奥秘,产生继续学习的愿望。

《因数与倍数》教学设计7

  教材分析:

  这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。

  了解学生:

  学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。

  教学目标:

  1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。

  3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。

  教学重点:学会求一个数的因数或倍数的方法。

  教学难点:理解和掌握因数和倍数的概念。

  教学准备:课件、作业纸。

  教学过程:

  一、创设情境——找朋友

  1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)

  2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)

  学生完整叙述:“××是 李老师的朋友,李老师是××的朋友”。

  3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)

  二、探究新知

  1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的.乘法算式表示出排列的方法。

  学生可能得到:每排6人,排成2排,2×6=12;

  每排4人,排成3排,4×3=12;

  每排12人,排成1排,1×12=12。

  课件出示相应的图和算式。

  2、揭示概念:以2×6=12为例。

  边说边板书:( )是12的因数,( )是12的因数;

  12是( )的倍数,12是( )的倍数。

  学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)

  突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)

  3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。

  学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)

《因数与倍数》教学设计8

  教学内容:

  人教版小学数学五年级下册第13~16页。

  教学目标:

  1、学生掌握找一个数的因数,倍数的方法;

  2、学生能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养学生的观察能力。

  教学重点:

  理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。

  教学难点:

  自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。

  教学具准备:

  学号牌数字卡片(也可让学生按要求自己准备)。

  教法学法:

  谈话法、比较法、归纳法。

  快乐学习、大胆言问、不怕出错!

  课前安排学号:1~40号

  课前故事:

  说明道理:

  学习最重要的是快乐,要掌握学习的方法。

  教学过程:

  复习

  1、4×0.5=2,所以4和0.5都是2的因数,2是4和0.5的倍数。这句话对吗?

  2、我们在因数与倍数的学习中,只讨论什么数?

  3、8÷2=4,所以8是倍数,4是因数。这句话对吗?

  今天,我和大家一道来继续共同探讨“因数与倍数”

  合作交流、共探新知

  探究找一个数的因数的方法(谈话法、比较法、归纳法)

  请认为自己是18的因数的同学带着号码牌上台来。

  a、学生上台――找对子,击掌―――。完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?

  b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?为了让人家看得更明白,我们从小到大排一下,好不好?

  学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

  c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?

  d、介绍写一个数因数的方法

  可以用一串数字表示;也可以用集合圈的方法表示。

  说一说:

  18的因数共有几个?

  它最小的因数是几?

  最大的因数是几?

  做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

  a、30的因数有哪些,你是怎么想的?

  b、36的.因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?

  c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?

  d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

  学生总结:

  板书:

  一个数最小的因数是1;

  最大的因数是它本身;

  因数的个数是有限的。

  轻松一下:

  我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

  b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

  因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

  过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

  a、2的倍数有哪些?你是怎么想的?从1开始做手势:1x2=2,2x2=4,2x3=6,一倍一倍地往上递加。

  发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?

  b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

  c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

  (到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

  学生总结:

  板书:

  一个数最小的倍数是它本身;

  没有最大的倍数;

  倍数的个数是无限的。

  (哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)

  c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。

  指着板书中的18的因数与2的倍数提问:

  你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)

  学生完成后表扬:哇,好厉害!

  三、深化练习,巩固新知

  1、做练习二的第3题

  在题中出示的数字里分别找出8的倍数和9的倍数

  注意“公倍数”概念的初步渗透。

  做练习二的第6题

  四、通过这堂课的学习,你有什么收获?

  五、布置作业:

  六、结束全课:

  请学号是2的倍数的同学起立,你们先离场,

  不是2的倍数的同学后离场。

  七、板书设计:

  18=1 ×18

  18=2 × 9

  18=3 × 6

  有序 不重复不遗漏

  18的因数有:1、2、3、6、9、18。

  因 数 和 倍 数

  一个数的最小因数是1,最大因数是它本身。

  因数的个数是有限的。

  2的倍数

  2,4,6,……

  一个数的最小倍数是它本身,没有最大倍数。

  倍数的个数是无限的。

《因数与倍数》教学设计9

  第一课时

  复习内容:因数和倍数。

  复习目标:

  1:通过整理复习,使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别,

  2:掌握2、5、3的倍数的特征,掌握求因数、倍数、最大公因数和最小公倍数的方法,逐步培养学生的抽象思维能力。

  复习重点:自主梳理知识,形成自己的认知结构。

  复习难点:辨析和理解知识间的区别和联系。

  教学步骤

  一、巩固相关概念,理解它们的区别与联系。

  同学们回忆一下,有关因数与倍数我们学到了什么?介绍了哪些概念?

  板书概念名称,并让学生说出每个概念及概念之间的区别与联系。引导学生深入理解相关概念,并形成相应的知识网络。

  二、巩固练习

  1、复习自然数、整数、奇数、偶数、质数、合数。

  (1)在2、3、0、91、0.25、1、65和50中,()是自然数,()是奇数,()是偶数,()是质数,()是合数。

  (2)教材第138页第2题。

  学生根据题目要求写出答案,并集体交流。

  将其中的合数分解质因数。

  问:质数与分解质因数有什么不同?

  (3)师小结:自然数按能否被2整除分为奇数和偶数。自然数(0除外)按因数的个数分为1、质数和合数。

  2、复习因数、倍数、最大公因数、最小公倍数和互质数。

  判断。完成141页第1题(引导学生完成,教师订正)

  补充:(1)一个数的倍数都比它的因数大。()

  (2)4.2÷0.6=7,我们说4.2是0.6的倍数。()

  说明:“4.2是0.6的7倍”是对的,但几倍与倍数是有区别的。因数和倍数只在整数范围内研究。所以,我们不能说0.6是4.2的因数,4.2是0.6的倍数。

  (3)24÷6=4,我们说24是倍数,6是因数。()

  (4)是互质数的两个数一定是质数。()

  问:互质数与质数有什么不同?

  (5)两个质数相乘的积一定是合数。()

  (6)如果一个自然数是6的倍数,那么它一事实上是2的倍数。()

  小结:一个数的因数个数是有限的,最小是1,最大是它本身。一个数的倍数的个数是无限的,最小是它本身,没有最大的倍数。

  3复习2、3、5的倍数的特征。

  做教材138页第1题

  学生独立完成,说一说自己是怎样想的?

  4、复习最大公因数和最小公倍数。

  完成第141页第2题(让学生独立完成,集体订正)

  小结:当两个数是互质数时,它们的最大公因数是1,最小公总人倍数数是它们的乘积。当较大数是较小数的倍数时,较小数是它们的最大公因数,较大数是它们的最小公倍数。

  三、全课总结(略)

  四、作业:

  课后反思

  复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。这与我们教研组以前提出的复习课要进行“知识梳理、查漏补缺、巩固提升”是基本一致的。本节课的流程也是“知识梳理、查漏补缺、巩固提升”这样三步骤。

  一节课下来,通过讨论和自己的进一步思考,觉得还是有一些不足。

  1.课堂不够开放。

  开放的数学课堂已经成为当前数学课堂教学形式的主流。现在的数学课堂教学应充分关注学生的学习情感和学习体验。在复习课的教学中,应给学生提供充分的“自我回忆”、“自我整理”、“质疑问难”、“自我反思”的空间。这与传统的.复习课中,教师将事先准备好的系统的知识结构图呈现在学生面前,供学生复习是有很大区别的。

  这节课中,学生的自我知识的整理,还可以进一步放手。可以完全由学生自己来完成,一个人完成不了的,可以小组合作完成。只有通过真正的自我整理,学生才会形成清晰的知识结构。

  在回忆了知识点之后,还可以设计这样一道开放题:请你从7、14、21、25、35这列数中找出与众不同的一个,并说明理由。这样可以充分激起学生的知识储备,灵活主动地运用知识解决问题。

  2.学生的自我评价和反思还不够。

  让学生对复习的结果进行评价与反馈。教育心理学十分重视教学评价与反馈,认为通过教学评价给予学生一种成功的体验或紧迫感,从而强化或激励学生好好学习,并进行及时的反馈和调控,改进学习方法。老师可以这样提问促进学生反思:你认为哪些地方是容易搞错的?或者说你需要提醒大家注意哪些问题?

《因数与倍数》教学设计10

  教学内容:青岛版教材小学数学五年级上册88—91页。

  教学目标:

  1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

  2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

  教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

  教学难点:探索求一个数因数或倍数的方法。

  教具准备:多媒体课件、学生练习题

  教学过程:

  一、谈话导入。

  师:同学们看这是什么?

  生:小正方形。

  师:想不想知道王老师给大家带来了多少个这样的小正方形?

  生:想。

  师:多少个?

  生:12个。

  师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

  生:能。

  【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

  二、教学因数和倍数的意义

  师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

  生:好!

  学生汇报:

  生1:1×12=12

  师:他是怎么摆的?

  生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

  课件出示摆法。

  师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

  生2:2×6=12

  师:猜一猜他是在怎么摆的?

  生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

  师:这两种情况,我们也算一种。

  生3: 3×4=12

  师:他又是怎么摆的?

  生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

  师:还有其他摆法吗?

  生:没有了。

  师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

  2.教学“因数和倍数”的意义。

  师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

  学生汇报:任选一道回答。

  生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

  师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

  师:还有一道算式,谁来说一说?

  生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

  师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

  师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)

  师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

  3、5、18、20、36

  【设计意图】让学生经历知识的.形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

  三、教学寻找因数的方法。

  1、找一个数的因数。

  师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

  师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

  生:有。

  师:老师提个要求:

  1)、可以独立完成,也可以同桌交流。

  2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

  2、探索交流找一个数的因数的方法。

  找一名有代表性的作业板书在黑板上。

  师:他找对了吗?

  生:没有,漏下了一对。

  师:为什么会漏掉?仅仅是因为粗心吗?

  生:不是,他没有按照一定的顺序找!

  师:那么要找到36所有的因数关键是什么?

  生:有序。

  师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?

  生:没有了。

  生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

  生:再接着找就重复了。

  师:那么找到什么时候就不找了?

  生:找到重复了,就不在往下找了。

  师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

  师:有失误的学生对自己的错误进行调整。

  3、巩固练习。

  找出下面各数的因数。

  4、寻找一个数的因数的特点。

  【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

  四、教学寻找倍数的方法。

  1、找一个数的倍数。

  师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

  生:能!

  师:试试看,找个小的可以吗?

  生:行!

  师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??

  师:有什么问题吗?

  生:老师,写不完。

  师:为什么写不完?

  生:有很多个!

  师:那怎么才能全都表示出来呢?

  生:可以加省略号。

  师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

  师:谁能总结一下你是怎样找到的?

  生:从小到大依次乘自然数。

  师:你真会思考!

  课件出示3的倍数。

  2、找5、7的倍数。

  师:我们再来练习找一下5的倍数。

  生:5的倍数有:5、10、15、20、25??

  生:7的倍数有:7、14、21、28、35??

  师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

  生:能!

  学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

  四、知识拓展

  认识“完美数”。

  师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

  小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

  【设计意图】丰富学生的知识,陶冶学生的情操。

  教学反思:

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

《因数与倍数》教学设计11

  教学内容

  冀教版《数学》四年级上册,第51页~52页。

  知识与技能:

  1、学生经历2、5倍数特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。

  2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学习的能力。

  过程与方法:

  在合作学习中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。

  情感、态度和价值观:

  培养学生学习习惯的养成,培养学生自主学习的策略,养成良好品质。

  重点

  掌握2、5倍数的特征,运用2、5倍数的特征判断一个数是不是2或5的倍数。

  难点

  通过探索2、5倍数的特征,判断一个数是不是2或5的倍数。

  教学过程:

  一、炫我两分钟

  一名学生回忆倍数的知识,请其他学生快速说出指定自然数的倍数(列举7的倍数、9的倍数);请同学判断一个数是不是另一个数的倍数(32是8的倍数吗?21是4的倍数吗?)。

  【设计意图:锻炼学生的口算能力,回忆巩固前面的知识,为本节课做准备。】

  学生完成“炫我两分钟”后,教师展示“本领”:请学生任意说出一个数,教师很快判断出它是不是2或5的倍数。

  【设计意图:通过教师的展示,激起学生学习的欲望和兴趣,教师及时引入课题。】

  二、尝试小研究

  学生独立完成尝试小研究第一题,找出2和5的全部倍数。学生找完后找学生汇报,并说明找倍数的方法。为探索2、5倍数的特征做好准备。

  课上尝试小研究

  1、在1~100的自然数中,找出5的所有倍数,用“△”圈出来;找出2的.所有倍数,用“○”圈出来。

  先自己独立思考,再和小组内成员交流,最后记录组内讨论的结果。

  12345678910

  11121314151617181920

  21222324252627282930

  31323334353637383940

  41424344454647484950

  51525354555657585960

  61626364656667686970

  71727374757677787980

  81828384858687888990

  919293949596979899100

  2、认真观察,细心发现。

  ①5的倍数有什么特征?

  我发现5的倍数特征是:x。

  ②2的倍数有什么特征?

  我发现2的倍数特征是:x。

  【设计意图:让学生亲身经历找5的倍数和2的倍数,通过观察、比较、归纳,得出5的倍数的特征、2的倍数的特征及一个数既是2的倍数,又是5的倍数的特征。】

  三、小组合作探究

  汇报完2和5的全部倍数后,引导学生探究2、5倍数的特征,探究前出示活动建议。学生自主探究后,进行小组合作讨论。

  交流前出示小组合作交流建议:

  先自己独立思考,再和小组内交流,最后由记录员记录好组内讨论的结果。组长要确定好发言顺序。

  【设计意图:通过同学之间的交流,使学生对知识有一个梳理和概括,活跃学生的思维,在组内进行初步的总结。】

  四、班级展示提升

  1.全班交流,师生评价。

  请一个小组的同学进行汇报,其他小组的同学倾听、补充、质疑。

  2.引向深入,总结点拨。

  汇报、交流后,教师进行及时点拨:

  5的倍数个位上不是0就是5;

  2的倍数个位上是0、2、4、6或8(2的倍数都是偶数);

  一个数既是2的倍数,又是5的倍数,个位上是0。

  3.互相纠错。

  组内同学检查一下尝试小研究中的题做得对不对,如果不对,加以改正。

  【设计意图:学生通过对自己的尝试进行总结交流,加深对获取知识点认识,通过与前面学过的知识点比较、拓展,帮助学生构建知识结构。教师适时的点拨、总结,使学生的知识更加系统化,让学生对关键知识进一步深化。对学案中的错误及时改正,这也保持了学生做尝试小研究的积极性,可能他的问题没能在全班展示,在在小组内得到了交流和重视。】

  五、挑战自我

  1、小青蛙喜欢在荷叶上玩。请你帮它选一选:

  5的倍数2的倍数同时是2、5的倍数

  【设计意图:通过富于趣味性的操作活动,及时巩固学生对2的倍数和5的倍数的判断。练习中还有意设计了既不是2的倍数、也不是5的倍数的数,加深学生对2和5倍数特征的理解,使学生明确不符合特征的数就不是2和5倍数。】

  2、一本30页的画册,任意翻开后看到的页数,有一个页数既是2的倍数,又是5的倍数。想一想:看到的这一页可能是哪一页?

  【设计意图:在课本练习的基础上,增加一个“看到的这一页可能是哪一页?”的问题,引导学生先找到“既是2的倍数,又是5的倍数”的数,再思考书页码的特点,进而顺其自然的得到答案。降低问题的难度,给学生提供一个解决问题的思路。】

  3、□里能填几?

  (1)9□是5的倍数,□里可以填;

  (2)6□是2的倍数,□里可以填;

  (3)7□既是2的倍数,又是5的倍数,□里可以填;

  (4)□0既是2的倍数,又是5的倍数,□里可以填。

  (学生回答完,教师追问:“□3”呢?怎样填是2的倍数?怎样填是5的倍数?)

  【设计意图:通过形式多样的练习,培养学生的发散思维能力,进一步加深对2和5倍数特征的理解。通过追问,学生发现不管方框里填几都不能是2或者5倍数,加深学生的知识的理解。】

  4、在下面的数字卡片中选出三张,按要求组三位数。

  6

  5

  0

  7

  (1)2的倍数:;

  (2)5的倍数:;

  (3)既是2的倍数,又是5的倍数:。

  用2和5两个数字组成25是5的倍数;组成52就是2的倍数了。

  用7和0两个数字组成70,既是2的倍数;又是5的倍数。

  【设计意图:通过形式多样的练习,培养学生的发散思维能力,进一步加深对2和5倍数特征的理解。】

  数学游戏(拓展练习)

  请你在0、1、2、3、4、5、6、7、8、9的数字中,选择数字组成新的数。像下面这样进行游戏。

  【设计意图:通过数学游戏,寓教于乐,巩固所学知识的同时,提高学生表达能力。】

  六、反思收获

  这节课你有哪些收获?你是怎样学到新的知识的?总结自己的表现。

  【设计意图:引导学生进行小结,有利于知识的积累和自主学习能力的提高,培养学生自我总结和评价的习惯和能力。】

《因数与倍数》教学设计12

  教学内容:

  苏教版九年义务教育六年制小学数学教科书第八册第70-72页。

  设计思路 :

  这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  教学目标:

  1、通过用动手操作和写不同的乘法算式,认识倍数和因数;依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  2、在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。

  教学重点:

  理解因数和倍数的含义。

  教学难点:

  自主探索并总结找出一个数的倍数和因数的方法。

  教学过程

  一、揭题

  谈话:在生活中,我们常常用形影不离来表示两个人的关系非常亲密,在我们的数学王国里也有不少数关系密切,今天我们就来认识一对形影不离的好朋友:倍数和因数。

  二、认识因数和倍数

  1、 观看大屏幕,用12个正方形摆成一个长方形,你们会拼吗?

  每排摆几个,摆几排?用乘法算式表示出来。分成四人小组,用正方形摆一摆,

  哪个小组汇报一下。

  还有不同的摆法吗? 12个正方形可以拼成3种不同的长方形,列出了3个乘法算式。

  2、 同学们,不要以为这三个算式很简单很普通哦,今天我们要学习的内容可都藏在里面呢。(看课件)

  (在数学中,因为4×3=12,所以4是12的因数,3也是12的因数,12是4的倍数,12也是3的倍数。)(暂停)

  谁能照着老师的样子说一说。(请2-3个学生说一说)

  谁能说说下面两个算式里,什么数是什么数的倍数,什么数是什么数的因数吗? (1×12=12、2×6=12)

  我们在说1×12=12的时候,你发现了什么?(12既是12的因数,又是12的倍数)

  3、友情提醒:(看课件)

  为了方便,我们研究因数倍数时一般指不是0的自然数。

  二、探求因数和倍数

  1、学生尝试找出18的所有因数。

  (1) 那我们来看18这个数,它有哪些因数呢?(学生说)你是怎么想的?

  学生独立完成,交流想法

  核对答案。

  (2)教学“试一试”

  15的因数有:

  16的因数有:

  (3)观察18、15和16的所有因数,你有什么发现吗?(小结:一个数最小的因数是(1),最大的是(它本身),一个数因数的个数是(有限的)。

  2、学习找一个数的倍数。

  刚才我们用一些好的方法找出了一个数的因数,那你们有信心又快又准确的找出一个数的倍数吗?比一比谁找的快找的多,看谁先把它找完。

  请找出3的倍数。(学生独立完成)

  汇报结果。

  你是怎么找的`?怎样找一个数的倍数比较方便?找倍数时一般按照从小到大的顺序去找。一个数的倍数的个数是无限的。我们一般写出5、6个,后面加省略号。

  (2)猜一猜:一个数的倍数又会有哪些特点呢? 把你们的猜想在小组里先交流交流。(请2-3个学生说说)

  光凭一题不能肯定我们的猜测就是正确的。我们再做几题验证一下。

  试一试:找出2、5的倍数。

  总结:一个数最小的倍数是它本身,没有最大的。一个数的倍数的个数是无限的。

  找出40以内6的倍数。

  三、应用倍数和因数

  通过刚才的学习我们掌握了找一个数的因数和倍数的方法,并发现了因数和倍数的特点。下面我们就用这些知识去解决一些生活中的实际问题。

  1、谁是谁非。(正确的在括号里画“√”,错误的在括号里画“×”。)

  (1)4×5=20,4是因数,20是倍数。

  (2)18最大的因数和最小的倍数,都是它本身。

  (3)1的因数只有一个。

  (4)8所有的因数是2、4、8。

  2、想想做做

  根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

  11×4=44 12×5=60 9×8=72

  3、游戏(找朋友)

  (1)找8的因数朋友;找24的因数朋友找;15的因数朋友

  (2)5的倍数;9的倍数;1的倍数

  3、猜年龄

  刚才同学们学习的真不错,我们放松一下。老师知道我们四年级的同学今年大多数应该是13岁了,那老师今年多少岁你们想知道吗?

  我今年的年龄恰好是13的倍数,你能猜到老师的年龄吗?

  4、介绍完美数(课件出示)

  四、全课总结

  五、挑战自我

  1、想一想自然数A最大的因数是几?最小的因数呢?最小的倍数是几?

  2、100以内谁的因数最多?

《因数与倍数》教学设计13

  教学内容:

  《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

  教学目标:

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:理解因数和倍数的含义。

  教学过程:

  一、创设情境,引入新课

  师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?

  学生回答。

  师:哦,老师知道了。XXX是XXX的好朋友。如果他这样介绍:XXX是好朋友。能行吗?

  生:不行,这样就不知道谁是谁的好朋友了。

  师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。

  二、探索交流,解决问题

  1、师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。

  根据学生的汇报板书:

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生:第①组每个式子都有1、12这两个数。

  生:第②组每个式子都有2、6、12这三个数。

  生:第③组每个式子都有3、4、12这三个数。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

  生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

  生:可以说12是12的因数吗?

  生:我认为可以,12×1=12,1和12都是12的因数。

  师:说得真好,从上面3组算式中,

  我们知道1,2,3,4,6,12都是12的因数。

  师出示:

  1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

  12 × 5=60 45 ÷ 3=15

  11 × 4=44 9 × 8= 72

  2、8是倍数,4是因数。…………… ( )

  强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

  因数和倍数不能单独存在。

  师出示:0×3 0×10

  0÷3 0÷10

  通过刚才的计算,你有什么发现?

  生:我发现0和任何数相乘,都等于0。

  生:0除以任何数都等于0。

  生:我补充,0不能作为除数。

  师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

  师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

  生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

  师:这个问题提得好!谁能回答他的问题?

  生:我觉得好像不一样,但不知道为什么?

  生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

  师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

  2、试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

  2、3、5、9、18、20

  师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

  生:2、3、9、18都是18的因数。

  师:18的因数只有这4个吗?

  师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。

  投影仪出示学生的不同作业。交流找因数的方法。

  师:出示18的因数有:1、18、2、9、3、6;

  你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

  生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

  师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

  生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

  师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

  生:乘法。

  板书:18的因数有:1、2、3、6、9、18。

  师:18的因数也可以这样表示。(课件出示集合圈图)

  组织交流:

  通过刚才的`交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

  突出要点:有序(从小往大写),一对对找

  (哪两个整数相乘得这个数),再按从小到大的顺序写出来。

  用我们找到的方法,试一个。

  课件出示:

  填空:

  24=1×24=2×( )=( ) ×( )=( ) ×( )

  24的因数有:_______________

  再试一个:16的因数有( )

  师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?

  生:因为4×4=16,只写一个4就可以了。

  师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

  生:18的因数有6个,最小的是1,最大的是18.

  16的因数有5个,最小的是1,最大的是16.

  师:谁能把同学们的发现,用数学语言概括起来。

  边交流边板书:

  因数: 个数 最小 最大

  有限 1 它本身

  2、师:刚才同学们通过自主探索和合作交流,不但掌握了找一个数的因数的方法,而且发现了一个数的因数的特点,那么一个数的倍数,怎样找呢?找一个小一点的,2的倍数,请你们在纸上写。

  师:停,写完了吗?你能把2的倍数全部写下来吗?那怎么办?

  生:不能全写下来,可以用省略号表示没写完的。

  师:你写得这样快,有小窍门吗?

  生:用这个数有顺序地乘1、2、3、4、……

  先写2,再逐个加2。

  板书:2的倍数:2、4、6、8、10……

  师:2的倍数也可以这样表示。(出示用集合圈表示的2的倍数)

  找出3的倍数:3、6、9、12、15 ……

  观察2和3的倍数,你有什么发现:

  板书: 倍数 : 个数 最小 最大

  无限的 它本身 无

  师:找出30以内5的倍数:

  生:5、10、15、20、25、30

  师:这一次你找到了哪几个?为什么不加省略号呢?

  课件出示:30以内5的倍数的集合圈图。

  引导学生抽象地概括出一个数的最小因数和最大因数分别是什么,总结出一个数的因数的个数是有限的结论,向学生渗透从

  个别到全体、从具体到一般的抽象归纳的思想方法。

  三、巩固应用,内化提高

  1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

  16和2 4和24 72和8 20和5

  2.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

  4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

  ①( )是4的倍数

  ( )是60的因数

  ( )是5的倍数

  ( )是36的因数

  ②请一名学生模仿刚才老师的要求,继续练习。

  ③想一想,应该提什么要求,让全班同学都能举手?

  生:( )是1的倍数。

  师:全班都举手了,谁能总结刚才的说法。

  生:任何不包括0的自然数都是1的倍数。

《因数与倍数》教学设计14

  【教学内容】

  人教版数学五年级下册P12一14,练习二。

  【教学过程】

  一、操作空间,初步感知。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.学生动手操作,并与同桌交流摆法。

  3.请用算式表达你的摆法。

  汇报:1×12=12,2×6=12,3×4=12。

  【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

  二、探索空间,理解新知。

  1.理解因数和倍数。

  (1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

  (2)用因数和倍数说说算式1×12=12,2×6=12的关系。

  (3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

  师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

  (3)30的因数有哪些?

  【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样

  有序地找,有多少个?

  找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o

  【评析】

  由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

  4.发现规律。

  观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

  【评析】

  通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

  师生共同总结:

  (1)因数和倍数是相互的,不能单独存在。

  (2)找一个数的因数和倍数,应有序思考。

  四、拓展空间,应用新知。

  1、15的因数有:——,15的倍数有:——。

  2.判断。

  (1)6是因数,24是倍数。( )

  (2)3.6÷4=0.9,所以3.6是4的因数。 ( )

  (3)1是1,2,3,4?的因数。 ( )

  (4)一个数的最小倍数是21,这个数的.因数有1,5,25。( )

  3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

  4、举座位号起立游戏。

  (1)5的倍数。

  (2)48的因数。

  (3)既是9的倍数,又是36的因数。

  (4)怎样说一句话让还坐着的同学全部起立。

  【评析】

  本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

  【反思】

  本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

  留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

  维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

  引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

  在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

  整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

《因数与倍数》教学设计15

  教学目标:

  1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

  2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

  3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

  教学重点

  理解因数和倍数的含义,知道它们的关系是相互依存的。

  教学难点

  探索并掌握找一个数的因数的方法。

  教学准备:

  12个小正方形片、每个学生的学号纸。

  教学过程设计:

  一、认识倍数、因数的含义

  1、操作活动。

  (1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

  (2)整理、交流,分别板书4×3=1212×1=126×2=12

  2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

  3、今天我们就来研究倍数和因数的知识。

  (揭示课题:倍数和因数)

  (1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

  指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

  小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

  (2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?

  指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

  二、探索找一个数倍数的方法。

  1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

  2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?

  3、议一议:你发现找3的倍数有什么小窍门?

  明确:可以按从小到大的'顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

  4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

  生独立完成,集体交流。注意用……表示结果。

  5、观察上面的3个例子,你发现一个数的倍数有什么特点?

  根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

  6、做“想想做做”第2题。

  学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?

  二、探索求一个数因数的方法。

  1、学会了找一个数倍数的方法,再来研究求一个数的因数。

  你能找出36的所有因数吗?

  2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

  3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

  4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)

  板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

  5、试一试:请你用有序的思考找一找15和16的因数。

  指名写在黑板上。

  6、观察发现一个数的因数的特点。

  一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

  7、“想想做做”第3题。

  生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

  四、课堂总结:学到这儿,你有哪些收获?

  五、游戏:“看谁反应快”。

  规则:学号符合下面要求的请站起来,并举起学号纸。

  (1、)学号是5的倍数的。

  (2、)谁的学号是24的因数。

  (3、)学号是30的因数。

  (4、)谁的学号是1的倍数。

  思考:

  1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义

  2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初

  步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

  在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

  3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

  4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

  5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

  为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。

【《因数与倍数》教学设计】相关文章:

《因数与倍数》教学反思11-26

《因数和倍数》教学反思11-15

《因数与倍数》数学教学反思11-04

倍数和因数教学反思10-17

因数和倍数教学反思15篇01-29

因数倍数数学教学反思02-02

《倍数和因数》数学说课稿02-17

最小公倍数教学设计01-12

2倍数特征教学设计05-21