三年级数学《平均数》教学设计

时间:2024-06-22 11:39:57 教学设计 我要投稿

三年级数学《平均数》教学设计

  作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的三年级数学《平均数》教学设计,仅供参考,大家一起来看看吧。

三年级数学《平均数》教学设计

三年级数学《平均数》教学设计1

  教学目标

  1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。

  2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。

  3、培养学生估算的能力和应用数学知识解决实际问题能力。

  教学重难点

  教学重点:灵活选用“求平均数”的方法解决实际问题。

  教学难点:平均数的意义

  教学准备:多媒体课件、秒表、绳子

  教学流程

  (一)创设情境,激发兴趣

  师:我听体育老师贾老师说咱们班的第一小组和第二小组的6名同学的“跳绳”成绩挺不错的!我很想知道两个小组,哪个更好些?有什么办法?

  生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。

  师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?

  生:6人一起跳,分组数数。

  师:哦,好主意!那就按你的方法比赛吧!

  (二)解决问题,探求新知

  1、引出“平均数”,体验“平均数”产生价值。

  6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:

  第一组:82、86、81第二组:78、83、82

  师:请同学们以最快的口算算出结果,并汇报补充板书如下:

  第一组:82+86+81=249第二组:78+83+82=243

  师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)

  师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)

  师跳了83下,改板书如下:第二组:78+83+82+(83)=326,现在第二组获胜了吧,你们高兴吗?

  生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。

  师(面带疑惑)哎呀,看来人数不相等时,用比总数办法来决定胜负是不公平的。难道就没有更好的办法来比较这两组总体跳绳水平的高低了吗?

  (全班寂然无声,学生思索着,半晌,有学生举手了)

  生:我在电视上看到过这种类似的情况,比较平均数就可以了。

  (这时有很多学生表示赞同,并投去了赞赏的目光)

  师:(赞赏)哦,你知道的知识真多,老师佩服你!

  2、探索求平均数的方法

  师:怎样计算每个组跳绳的平均数呢?

  (在老师的引导下,学生提出了方法,师要求任选一组说想法)

  生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83

  生2:我从86里拿出3个,给82加1也变成83,给81加2也变成83,每人都是83,那平均数就是83

  师:谁听明白了吗?(再指5名学生说)

  师:(看着生2)你能给你的这种方法取个名字吗?

  (由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)

  师板书:算术法移多补少法

  师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的.平均数了?

  (生摇头,大胆学生说:除不尽的)

  师:(乘机)那你们有什么好办法?

  生:用我们学过的“估算”

  师:好,那你们试试吧!(指1名板演)

  板书:(78+83+82+83)/4~81

  师:从两组平均数83和81中,你知道了什么?

  生:第一组平均数大,所以还是第一组总体水平好一些。

  3、理解平均数的意义

  师:第一组的83表示什么?你怎么理解“83”这个数?

  (引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)

  师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?

  生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。

  生2:平均数,因为有了你,世界上才会太平

  ......

  4、沟通平均数与生活的联系。

  师:在平时生活中,你们见过平均数吗?

  生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数......

  (三)、联系生活,拓展应用

  1、多媒体呈现:下面是某县1999—xxxx年家庭电脑拥有量的统计图。

  图略:1999年350台,20xx年600台,xxxx年1000台,xxxx年1600台,xxxx年2500台

  (1)求出这五年来,平均每年拥有电脑多少台?

  (出现算术法和移多补少法两种方法)

  (2)估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?

  (3)从图上你还知道些什么?

  2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨

  师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?

  (1)(16+24+36+27)/4

  (2)(16+24+36+27)/12

  (3)(16+24+36+27)/365

  a、生举手表决

  b、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数

  (四)、总结评价,提高认识

  师:通过这节课的学习,你有什么收获?

  师:你觉得这些知识对你以后生活或学习有什么影响或作用?

  板书设计

  求平均数(算术法移多补少法)

  第一组:(82+86+81)/3=83第二组:(78+83+82+83)/4~81

  当人数不相等,比总数不公平时,我们就得看“平均数”。

  “平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势

三年级数学《平均数》教学设计2

  教学内容:

  冀教版小学数学三年级下册53页例1

  教材简析:

  教材从学生最熟悉、最感兴趣的投球游戏入手,将生活素材贯穿于整个教学活动的始终,始终遵循数学与生活密不可分的理念。众所周知,从《教学大纲》到《课程新标准》“平均数”也经历了从应用题到统计学的统计量的迁移,我更觉得这才是平均数的真正回归,因此我在设计本节教学时着重体现它的意义,深挖其价值和产生的必要性。

  学情分析:

  之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知就感觉很抽象,学习时必须要依据实际经验和亲身经历,借助具体形象的支持,对平均数有初步的了解并到认可。根据三年级学生好胜心强、求知欲旺,有一定的探索意识,故在教学过程中设计了多个学生熟知可操作的活动,以便理解和总结,教师作为参与者、合作者从而引导探索并感悟,以便达标。

  设计理念:

  兴趣是最好的老师,学生的学习必须建立在有趣的基础上,学生富于挑战,乐于争胜,因此设计学生感兴趣的、或参与、或经历、或pk等活动。本着参与远远高于旁听的效果,尽量多的增加参与度和参与效果,在新课标的理念下,结合我校三三三高效课堂模式设计了“创设情境、自主学习、合作探究、理解感悟、应用巩固、堂清检测”这样的学习过程。

  学习目标:

  1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。

  2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。

  3、学会与他人合作交流,获得积极的数学学习的`情感。

  教学重点:

  1、理解平均数的意义和产生的必要。

  2、理解平均数的算法的多样性。

  教学难点:

  平均数的区间范围以及它的“虚拟性”

  易考点:

  平均数的计算。

  易错点:

  平均数的计算公式必须是总数除以与之对应的总份数。

  易混点:

  已知甲数比乙数多几,使两数相等,则甲数给乙数几个?

  一、综合预设目标、学情分析。

  学习目标:

  1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。

  2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。

  3、学会与他人合作交流,获得积极的数学学习的情感。

  学情分析:之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知却很抽象,必须要依据实际经验和亲身经历,借助具体形象支持,对平均数有初步了解并认可。

  二、课堂教学活动设计、指导方案

  知识层面、时间预设

  教师行为预设

  学生行为预设

  设计意图

  一、激趣导入(5分钟)

  二、自学交流+展示+感悟(30分钟)

  1、自主学习:仔细看情境图,认真找寻信息,发现总结新信息,或提出疑惑……先是对子交流,然后有问题的组内解决。

  2、通过活动,或参与,或经历,展示、争论、比较、总结、感悟出新知。

  三、检测(5分钟)

  学生认真审题、仔细推敲,回顾、理解并巩固平均数的意义及特点。

  四、堂清(5分钟)

  通过总结和课后练习,同学们会对平均数的意义、特点以及计算有更进一步的理解和巩固。

  1、今早听到一报道:说某市统计三年级女生身高普遍高于男生:我也想测测咱们班学生身高情况:请出我们班最高的3名男生和三名女生,测量他们的身高。如何确定男生高还是女生高呢?

  2、看来同学们评判得很正确,有没有信心再来当一次真正的裁判呢?自学课本53页,努力找寻并挖掘数学信息和问题,如何解决?(因为学生对投球可能了解不多,老师可以顺势引导:据我所知,投球时,以10个为标准,投进篮筐为投中,当然这需要一定的技术。)

  3、自由发言并将加分记录到评价栏中。

  4、那组成绩好呢?

  5、通过学生说出要求平均数,板书课题——《平均数》并简单的告诉同学们今天的学习目标并板书{逐渐补充其意义和算法。

  6、找临近8位同学上讲台排成不同学生数的两行,让学生想办法排成学生数相同的两行。(老师在黑板上草书列表比较,表格内项目包括每组的最大数、最小数、以及待填充的平均数)

  7、如果学生没能交流出“移多补少”时,教师指出:原来两行学生数不一样多时,经过移多补少,使两行的学生同样多,这种把几个不同数经过移多补少,得到的相同数就是这几个不同数的平均数。根据学生的疑问,从而引出平均数实际是一个虚数,并非一个实实在在的数,比如:某市统计家庭拥有孩子数目,结果平均每个家庭一个半孩子(因为此时学生还未涉及小数,只能说一个半了),你说谁家有一个半孩子呀!要么没有,要么有一个,再要么有两个?……因此平均数它既不是某一个具体的数,只能反应一组数据的一般情况。(根据同学们的总结和理解,顺势板书:虚数反应一般情况平均数在本组数据中的取值区间:比最大数小,又比最小数大)

  8、要求学生迅速有序的摆放教科书。

  9、解决53页两组投球那组优胜的问题时刻提醒同学们:注意平均数的取值区间、“总合均分”——总和不变均分相应的份数。据此一定要先估后算哟!(同时将刚刚学生用平均数可以比较两组的成绩,也只有用平均数来解决这个总数不同、份数也不同的问题——板书:比较和平均数产生的必要性)

  10、小老师读题——检测题

  11、学生自由发言总结今天收获。平均数的用处可真大呀!我们还可以根据平均数进行预测——预测输赢、预测天气等,这对我们的生活有一定的指导作用,日常生活中处处有数学,只要我们多留心,我们的数学本领就会越来越大!

  12、课末,让学生当评委给自己的这节课打分,最后计算出自己所在组的平均分,(能明白并能叙述基础知识得6分、四个检测题全对得4分)争取每组的平均分不少于8分哟!

三年级数学《平均数》教学设计3

  教学目标

  知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

  过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。

  情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

  教学重点:

  让学生感受算术平均数与加权平均数的练习和区别

  教学难点:

  利用算术平均数与加权平均数解决问题

  教学过程:

  第一环节:情境引入 (3分钟,复习导入,学生回顾)

  内容:请同学们回忆:什么是算术平均数?什么是加权平均数?

  请同学们各举一个有关算术平均数和加权平均数的实例,并解决之。

  在学生的'复习交流中引入课 题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

  第二环节 :合 作探究(25分钟,小组合作 探究,教师指导)

  内容:1、做一做[

  我校对各个班级的教室情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:

  黑板 门窗 桌椅 地面

  一班 95 90 90 85

  二班 90 95 85 90

  三班 85 90 95 90

  (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?

  (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?

  对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。正确的答案是:

  一班的卫生成绩为:9515%+9010%+9035%+8540% = 88、75

  二班的卫生成绩为:9015%+9510%+8535%+9040% = 88、75

  三班的卫生成绩为:8515%+9010%+9535%+9040% = 91

  因此,三班的成绩最高。

  对于第( 2)问,让学生先在小组内各抒己见,然后在全班交流体会:

  以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。

  内容:2、议一议

  小颖家去年的饮食支出为3600元,支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年 增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?

  以下是小明和小亮的两种解法,谁做得对?说说你的理由。

  小明: (9%+30%+6%)= 15%

  小亮:

  学生分组讨论,全班交流,说明理由:

  由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率地位不同,它们对总支出增长率的影响不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的权,从而总支出的增长率为小亮的解法是对的。

  第三环节:运用提高(10分钟,学生独立完成,全班交流)

  内容:1、小明骑自行车的速度是15千米/时 ,步行的速度是5千米/时。

  (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?

  (2)如 果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?

  2、某校招聘学生会干部一名,对A,B,C三名候选人进行了四项素质测试,他们的各项测试成绩如下表所示:

  测试项目 测 试 成 绩

  A B C

  语 言 85 95 90

  综合知识 90 85 95

  创 新 95 95 85

  处理问题能力 95 90 95

  根据实际需要,学校将语言、综合知识、创新、处理问题能力按20%、30%、30%、20%的比例计算成绩,此时谁将被录用?

  第四环节:课堂小结(2分钟,学生总结0

  内容:说说算术平均数与加权平均数有哪些联系与区别?

  教师引导学生比较、议论、交流、总结出结论:

  算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数。

  由于权的不同,导致结果不同,故权的差异对结果有影响。

  第五环节:布置作业

  课本习题8、2。A组(优等生)1、2、3 B组(中等生)1、2

  C组(后三分之一)1、2

三年级数学《平均数》教学设计4

  教学目标:

  1、通过实际问题,经历了解“平均数”意义的过程。

  2、了解“平均数”的意义,初步学会求简单数据的平均数,能运用生活经验对“平均数”作出解释。

  3、体会求“平均数”在现实问题中的必要性,感受数学与生活的密切联系。

  教学重点:了解“平均数”的意义,初步学会求简单数据的平均数。

  教学难点:能运用生活经验对“平均数”作出解释。

  课前准备:CAI课件、教师准备5个纸杯,杯中放上不同根数的筷子。学校第一季度用水量表。

  一、师生谈话,引入新知。

  师:同学们,你们喜欢课间活动吗?在课间活动中你喜欢做哪些游戏?是怎样组织的?

  学生可能会说:

  生1:我喜欢玩跳绳,我们4人一组,我们组跳的最多。

  生2:我喜欢玩呼拉圈,我们两人一组,我们组我转得最多。

  师:同学们在课间活动中玩的真开心!老师特意排了张照片,你看!他们在做什么游戏呀?(踢毽子!)好玩吗?老师把咱们班这两组同学踢毽子的情况记录了下来,你们看!(CAI课件出示统计表)

  师:从这里你了解到哪些信息?

  学生可能会说出很多:

  生:第一组王艺丹踢了8个,穆德芳踢了7个,赵丹宁踢了6个,郭帅成踢了7个。

  生:第二组……

  二、讨论交流,探究新知。

  师:刚才你们从表中了解到这么多数学信息,真了不起!你想通过这些信息知道哪些问题?

  学生可能提出这样的问题,如:

  生1:第一组一共踢了多少个?第二组一共踢了多少个?

  生2:哪一组的成绩好?(板书)

  师:你提的问题特别有价值,你们认为那一组的成绩好?

  生3:第二组成绩好,因为第二组有踢毽子冠军。

  生:我不同意他的观点,一个人的成绩好,并不代表全组的人都好。

  生:我认为第二组的成绩好,因为第二组比第一组多踢两个。

  生4:我不同意,因为第一组人少,第二组人多,人数不一样,比总数不公平。

  师:看来比总数、有头球冠军都不行,都有矛盾冲突。那么大家在思考一下怎样比才公平呢?

  学生可能说到:把每个组踢的总数平均一下,比较每组平均成绩就公平了。

  师:你从哪知道平均成绩?(期末老师说过我们班的平均成绩是多少)求每组的平均成绩就是求什么?

  (每组平均每人踢了多少个?板书)

  师:你们同意他的意见吗?那就请同学们小组合作,先商量一下怎样求出每组平均每人踢毽子的个数,然后再算一算,看哪个组合作得最愉快!

  教师巡视,注意了解学生的计算方法,对学困生进行指导。(在合作接近尾声时,让学生将自己的方法写在黑板上,并写上组名。)

  可能会出现以下两种方法:

  1.分步:(解题思路:先算什么,再算什么。)2.综合算式:(找小组同学讲出解题思路)

  (蓝兔)第一组:8+7+6+7=28(个)

  (虹猫)第一组:(8+7+6+7)÷4

  28÷4=7(个)(4表示什么?7个是什么?)

  第二组:9+8+5+3+5=30(个)

  30÷5=6(个)第二组:(9+8+5+3+5)÷5

  =30÷5

  =6(个)

  师:仔细观察这两组的解题方法有什么不同?有什么共同点?

  生:不同点:一个是分步计算,一个是列综合算式。

  生:相同点:都是用总个数除以每组的人数。

  师:我们在解决问题时,如果没有特殊要求,分步综合都可以。现在谁能大声说出那组的成绩好?

  生:第一组!

  师:让我们一起鼓掌向穆德芳这一组表示祝贺!(板书:优胜组),第二组同学请继续努力。

  师:通过踢毽子这个游戏,你知道了什么?

  生:我知道要求每组的平均成绩,应用这组的总个数除以每组的人数。

  生:要知道哪组的成绩好应比较每组踢的平均个数。

  师:看来这个数的作用真不小呢,他能反映出每组的整体水平!(用手指板书)谁来给每组平均每人踢得个数起一个名字?

  生:平均踢的个数……(很好!能不能再简捷一点?和我们的名字一样两个字或三个字?)

  生:平均数。(非常好,那我们就把平均每人踢得个数叫平均数。)

  板书:平均数

  师:刚才我们用“平均数”这个新朋友解决了哪组成绩好的问题。在现实生活中还经常遇到求平均数的问题。看,这是我班小卫士梁捷统计的他家一周内丢弃塑料袋的情况。(课件出示)

  师:请你们帮梁捷算一算,他们家平均每天丢弃几个塑料袋?自己独立试一试,有困难的可以找同桌帮忙。

  师:把你计算的方法和结果和大家交流一下。

  学生可能会出现两种方法:

  生1:先算出梁捷家一星期丢弃塑料袋的总个数,再除以7。(实物投影)

  分步:1+3+2+3+2+6+4=21(个)综合算式(1+3+2+3+2+6+4)÷7

  21÷7=3(个)(7表示什么?)=21÷7

  =3(个)

  答:梁捷家平均每天丢弃3个塑料袋。

  师:你们同意他的解题思路吗?同学们真聪明,这么快就求出了梁捷家每天丢弃3个塑料袋。我们的好朋友蓝灵鼠听说大家在研究平均数,特意赶来向我们请教一个它一直很糊涂的问题。你看!(课件配音出示蓝灵鼠画面:求出的“3个”是实际每天丢弃的。塑料袋个数吗?)小组讨论一下帮蓝灵鼠解决这个问题。

  学生可能有两种认识:

  生:我认为“3个”就是梁捷家实际每天丢弃塑料袋的个数(教师可以让学生再次观察表格,明确“3个”不是实际数)。

  生:我认为“3个”不是梁捷家每天实际丢弃的个数,而是梁捷家平均每天丢弃塑料袋的个数。它是一个“平均数”。

  师:平均数“3个”和实际每天丢弃的塑料袋个数比较可能会怎样?你能举个例子说说吗?(适时激励表扬)

  生:实际丢的个数有的比平均数多,有的比平均数少。(如果学生不能说出教师给予提示)

  师:蓝灵鼠听了大家的解释满意吗?一起了解一下!(课件出示蓝灵鼠:哦!原来是这样呀!谢谢大家,拜拜!)(师生一起拜拜!)

  师:我们算出了梁捷家平均每天丢弃3个塑料袋,照这样计算,请想一想我们班有80个同学,那么80个家庭一天一共丢弃多少个塑料袋?算一算一周丢弃多少个塑料袋?

  学生算完后,交流计算结果。

  师:通过刚才的计算,你想到了什么?

  学生可能说:

  生:那就会到处都是塑料袋,我想对丢弃塑料袋的'人说:“请不要随意丢弃塑料袋了。”

  生:塑料袋满天飞。

  ……

  师:有了我们这些环保小卫士的努力,相信我们的环境会变得越来越好!

  三、动手实践,理解新知。

  师:接下来我们一起做一个非常有意思的装筷子游戏。请各组派代表准备好杯子,按老师的要求做。

  师:仔细观察装好的筷子,你发现了什么?

  生:杯中筷子的根数不一样。

  生:……

  师:如果要使纸杯中的筷子一样多,可以怎样做?小组合作,先商量一下,然后再试一试,看哪个小组的方案最有创意。

  学生可能会出现三种情况:

  (1)把铅笔都取出来,用刚学过的求平均数的方法计算,先求纸杯中共有多少根铅笔,再求平均每个纸杯放几根。(必须出现)

  分步:3+4+2+5+1=15(根)综合:(3+4+2+5+1)÷5

  15÷5=3(根)=15÷5

  =3(根)

  师:你真聪明,能用我们今天所学的知识解决问题。我们为她鼓掌!

  (2)把所有的小棒收到一起,再一根一根的分次放到纸杯里。

  (3)先算出平均数,再移多补少。把多的移到少的中,使每个纸杯中都是3个。(你的方法更有创意,你真棒!)

  师:刚才我们用不同的方法解决了这个问题,看来求平均数的方法不只一个。其实,解决同一个问题会用不同的解决方法,我们要根据实际情况和自己的需要灵活选择,相信同学们一定会开拓出新的天地!

  四、走进生活,应用新知。

  师:同学们,平均数在我们日常生活中有广泛的用处,为了更好的认识这个新朋友,我们一起来了解下面的信息。

  课件出示:学校第一季度的用水量统计表:

  1.算一算我校第一季度平均每月的用水量。

  2.说说从该表中你有什么发现,你想对学校的老师和同学们说些什么?

  生:3月份用水量最多,同学们、老师们我们都应该节约用水。

  师:同学们,你们知道老师最想说的是什么吗?

  师:节约用水,从我自己做起!

  五、深入生活,拓展应用。

  屏幕出示画面

  师配以画外音:一条弯弯曲曲的小河,穿过了一片土地,平均水深120厘米,你们看。谁来了?小明来了!我的身高可是140厘米,不会游泳,如果我在这条河里面玩耍,会有危险吗?

  师:听了同学们的劝告,小明一定不会在河里玩耍了。(德育教育)

  六、回顾总结,畅谈收获。

  好的同学们,不知不觉,就要下课了,通过这节课的学习你有什么收获和感想,和大家分享一下?

  希望同学们的每一节课多能收获多多,快乐多多!

  七、课间游戏,体验应用。

  师:课下作业,课后,请同学们自由结合小组,进行一次拍球比赛,比一比哪组的成绩好。

  规则如下:

  1.以小组为单位,在室外进行。

  2.每人拍3次,记录最好成绩。

  3.计算出小组同学的平均成绩。

  师:请同学们认真完成,下节课我们选出优胜组,大课间给大家表演!好了今天的课就上到这里,同学们再见!

三年级数学《平均数》教学设计5

  《平均数》是人教版课标版小学数学三年级下册第三单元的内容。我在教学这节课时,刚好看到《小学教学》杂志上刊登了“数学王子”张齐华老师的关于《平均数》一课的课堂实录与报告,我非常兴奋,并尝试运用张老师的思路上了这节课,效果非常好。因此,今天的说课,我就选择了这节内容来和大家交流。

  我直接从教学过程说起,并顺便结合教学中的各个环节来阐述我的教学方法和其蕴含的教学思想,以及所达到的教学目标。

  一、创设情境,初步感知。

  师:你们喜欢打篮球吗?老师很喜欢篮球,这不,昨天下午还与五年级的几个学生玩了一次“1分钟投篮挑战赛”。怎么样,想不想了解现场的比赛情况?

  1、出示李强3次投篮的成绩:5个、5个、5个。

  问:可以用哪个数表示小强一分钟投篮的水平?

  2、出示万林3次投篮的成绩:3个、5个、4个。

  问:可以用哪个数表示小林一分钟的投篮水平?为什么?(在学生回答的基础上,多媒体演示“移多补少”的过程。)

  3、出示王鹏3次投篮的成绩;3个、7个、2个。

  问:可以用哪个数表示王鹏一分钟投篮的水平?还可以怎么求出这个数来?

  4、讨论思考:“4”是3、7、2这三个数的平均数,它能代表王鹏第一次投中的个数吗?能代表第二次的吗?能代表第三次的吗?它究竟代表什么?

  这里,我把李强的成绩设定为3个“5”,让学生很自然地想到用“5”表示小强一分钟的投篮水平,然后让第二个出场的万林设出3个不一样的成绩,制造认识冲突,引发学生想出“移多补少”求平均数的想法,并通过多媒体动画演示,给学生比较直观的表象,强化学生的认知。最后再给出一组不同的数据,巩固“移多补少”求平均数的想法,并追问“还可以怎么想”,逼学生想出求平均数一般方法来,即“先合并再均分”,并板书在黑板上。

  完成板书后,教师适时进行点评总结,告诉学生:“这种通过‘移多补少’或‘先合并再均分’得到的同样多的'这个数,就叫做原来几个数的平均数。”并连续几个追问:“4”能代表王鹏第一次、第二次、第三次投中的个数吗?它究竟代表什么?最终,让学生体会到,平均数不能代表其中的每一个数据,它只是表示一组数据的总体水平(板书)。

  至此,在直观演示、板书算式、连续追问,课前设定的知识与技能目标:让学生理解平均数的含义,掌握求平均数的一般方法,已经基本达成。

  二、深化理解,建构新知

  1、三个学生完成比赛后,该老师出场了,我故意卖个关子说:

  正式比赛时,老师要求投4次,他们同意了,下面是我前三次投中的结果。(多媒体展示)4个、6个、5个。猜一猜,老师投了第4个后,结果会怎么样呢?

  2、在学生多次猜测后,老师出示第4次投篮成绩:1个,然后问:

  请估计一下老师最后的平均成绩是几个?你为什么不估计为6个或1个?

  3、试想一下,如果老师最后一次投5个、投9个的话,平均成绩会是多少?可以动手算一算。

  4、多媒体出示3个统计图:问:认真观察,你发现了什么?

  这个环节的设计,旨在让学生明白“每一个数据的变化都会牵动平均数发生变化,但不管怎么变化,平均数总是在最大数和最小数之间(板书)。当然,学生还可能有其它的发现,那自然美不胜收了?

  三、综合运用、拓展延伸

  “学以致用”是教学的一个重要目标。因此,每学一点新知识,我们都应该安排一些恰当的问题情境,让学生运用学习到的新知识去尝试解决问题,达到“学以致用”目的。我设计的练习以下几项:

  1、三张纸条:7cm、12cm、8cm,老师估计它们的平均长度是10cm,大家认为对吗?

  2、以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米?

  3、《xxxx年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁。30年前,也就在张老师出生那会儿,中国男性的平均寿命大约只有68岁。你发现了什么?可有位老爷爷今年70了,他看到这则消息后不但不高兴,还很难过,这是为什么?你怎样来劝劝他?

  4、生活中,哪些地方还用到了平均数?它们各代表什么?

  数学来源于生活,最终还要运用到生活当中去,我设计的这几个问题,旨在让学生学会用数学的眼光去观察、思考、进而解决生活的问题,让学生感受到数学是和我们的生活密切相关的,而且我们学习的数学是生动的,有价值的。

三年级数学《平均数》教学设计6

  教学目标:

  1、使学生理解“平均数”的含义。

  2、使学生掌握求平均数的方法。

  3、培养学生的实践能力。

  重点难点:

  1、理解“求平均数”的含义,掌握求“平均分”的方法。

  2、区分“平均分”与“求平均数”这两个概念的不同含义。

  教具学具:

  主题图,小棒

  教学过程:

  一、学前准备

  1、 口算。

  48÷8= (1+3+5)÷3= (5+5+4+6)÷4=

  2、 口答。说一说,48÷8和(1+3+5)÷3分别表示的意义。

  3、 列式计算。把24名同学平均排成4队,每队有多少人?

  4、 导入新课。

  说说“平均”是什么意思?什么是“平均分”?结果所得到的数“6”,这个数你能给他名字吗?在现实生活中,求平均成绩、平均身高、平均体重的情况有很多,今天我们就来共同研究“求平均数”的问题。(板书题目)

  二、探究新知

  1、 讲述平均数的含义。

  把一个总数平均分以后得到的结果。

  平均数怎样求呢?

  2、 出示主题图。

  (1)看懂图意。

  回收小组成员小红、小兰、小亮和小明分别收集了14个,12个,11个,15个矿泉水瓶,这个组平均每人收集了多少个矿泉水瓶?

  (2)学生找出已知条件和问题。

  讨论:怎样理解“平均每人收集了多少个矿泉水瓶”?

  (3)汇报讨论结果。

  进一步明确:“平均每人收集的个数”并不是每个人收集的实际个数,而是在收集总数不变的情况下,假设每个人收集相同个数的值。

  (4)引导学生看图。

  提问:怎样做才能使四个同学收集的个数同样多?

  (5)学生操作。

  学生拿出小棒,1根小棒代替1个矿泉水瓶,先按每个人收集的个数摆放,再动脑动手操作,使四个人收集的个数相等。

  (6)汇报操作结果。

  学生甲:我先数出共有多少根小棒,共52根,再把52平均分成4份,52÷4=13(根),就得出每个人平均收集的个数是13个。

  学生乙:运用“移多补少”的数学思想,从小红的14个里取出1个给小兰,从小明的15个里取2个给小亮,就可以直接得到4个人都相等的瓶子个数。

  (7)小结操作结果。

  通过同学们的操作,我们得到4个人平均收集的瓶子数是13个。但通过操作,我们发现,4个人收集矿泉水瓶的个数发生了变化,这4个人收集的.矿泉水瓶的个数才相等。也就是说,平均数得到了,而原来4人收集的个数都发生了变化。在现实生活中,很多求平均数的情况是不允许改变原数的。

  例如:求两个人的身高,并不是把高个儿截下一部分来,接在矮个儿身体上,使两人身高相等。也就是说,求平均数并不要求改变原来的实际值。由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的。

  如果我们不通过操作,直接通过计算,能不能求出这4个人平均收集的个数?

  (8)引导学生合作探究。

  (9)汇报探究结果。

  应先相加求出收集到的总数,再用总数除以人数,得到平均数。

  (10)指导学生列式计算。

  (14+12+11+15)÷4

  =52÷4

  =13(个)

  3、 我们学习了如何求平均数,下面我们自己动手算一下上个学期我们学校进行了1分钟跳绳比赛,我们找了几个同学的跳绳成绩,咱们一起来算算他们平均跳了多少次?

  (单位:次)

  杨扬

  李信芳

  陈希

  郑钟一

  刘安娜

  刘严

  99

  106

  102

  104

  140

  103

  (99+106+102+104+103)÷6

  =654÷6

  =109(次)

  点名让学生说明什么是“总数量”“份数”“平均数”

  三、课堂作业新设计

  教材第44页练习十一的第2题。

  (1) 读题,理解题目要求。

  (2) 把统计表填完整。

  (3) 独立计算。

  (4) 提问:怎样求出平均最高气温和最低气温?

  四、知识扩展

  说一说平均数在实际生活中的应用

  (1) 家庭中人的平均身高、平均岁数、平均住房面积

  (2) 作业本的平均每页字数

  (3) 最近一周的平均温度

  (4) 考试之后知道各科的得分求平均分

  (5) 捐款

  五、课堂小结

  谈谈你自己的收获。

三年级数学《平均数》教学设计7

  一、教学目标

  (一)教学知识点

  1、会求加权平均数,并体会权的差异对结果的影响、

  2、理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题、

  (二)能力训练要求

  1、通过利用平均数解决实际问题,发展学生的数学应用能力、

  2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维、

  (三)情感与价值观要求

  通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心、

  二、教学重点

  1、会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性、

  2、探索算术平均数和加权平均数的`联系和区别、

  三、教学难点

  探索算术平均数和加权平均数的联系和区别、

  四、教学方法

  探讨式教学、

  五、教具准备

  投影片三张:

  第一张:补充练习(记作8、1、2 A);

  第二张:补充练习(记作8、1、2 B);

  第三张:补充练习(记作8、1、2 C)、

  六、教学过程

  Ⅰ、创设问题情境,导入新课

  在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数、本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别、

  Ⅱ、讲授新课

  1、例题讲解

  某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面、

三年级数学《平均数》教学设计8

  教学准备

  多媒体课件,姓名笔划数统计表每人一张。

  三、教学目标与策略选择

  平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:

  (一)教学目标:

  1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。

  2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。

  3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。

  (二)教学重点:理解平均数的意义和求平均数的方法。

  (三)教学难点:理解平均数的意义。

  四、教学流程设计及意图

  教学流程

  设计意图

  (一)创设情境,激发兴趣

  师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)

  师:谁又能知道老师的姓名呢?

  学生说一说后,出示自己的姓名。

  师:能完成这表格吗?(学生数一数,完成表格)

  笔画数

  师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)

  师巡视指导,搜集、选择教学信息。学生完成后作简单交流。

  (二)解决问题,探索新知

  1、在解决问题中感知概念

  师:请观察老师姓名的笔画数,你能提出什么数学问题?

  预设生(1)每个字笔画数的多少?

  (2)比多少?

  (3)发现数字间的规律。

  (4)求总数?(师追问:你是怎样算出来的?)

  师:知道了笔画数的总数,你现在又能解决什么问题?

  预设生:可以求出平均每个字的笔画数。

  师:平均每个字的笔画数,你是怎么得来的?

  预设生(1)通过计算(7+5+9)÷3=7

  (2)通过移多补少得到。

  2、在对话交流中明晰概念

  师:胡老师的姓名平均笔画数7画,这又表示什么?

  预设生(1)表示胡必泛三个字笔画数的平均水平。

  (2)表示老师姓名笔画数的一般水平。

  师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?

  (学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)

  预设生(1)有关系的,是他们的中间数。

  (2)平均笔画数比笔画最多的`少一些,比笔画最少的多一些。

  (3)平均笔画数在笔画最多的数字与笔画最少的数字之间。

  (4)平均笔画数就在这三个字笔画数的中间位置。

  师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把7叫做胡老师姓名笔画数的--平均数。(板书课题)

  师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)

  师生交流计算的方法与结果。

  3、在比较应用中深化概念

  出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)

  师:比较他们姓名中每个字的笔画数,你有什么方法?

  预设生(1)比笔画数的总数。

  (2)比平均笔画数。

  (让学生先在小组内讨论,然后组织全班汇报交流。)

  预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。

  (2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。

  学生运用平均数进行比较,然后组织交流。

  师:比完后你有什么感想?(生回答略)

  师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?

  预设生:既可以用平均数来比,也可以用总数来比。

  师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。

  出示(1)文成县实验小学四年级平均每班有学生56人。

  (2)四(3)班上学期期末考试数学平均分是81分。

  师:你猜这些数据是怎么得来的,是什么意思,有什么用处?

  (学生小组讨论,然后全班汇报交流。)

  预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。

  (2)略

  (三)尝试解题,自主归纳

  师出示例题:

  有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?

  师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。

  预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。

  学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5

  师:你们知道这位同学是怎么想的吗?

  预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。

  学生计算,注重计算方法的选择。然后交流。

  师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。

  (学生小组合作,交流看法,教师参与讨论。)

  学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。

三年级数学《平均数》教学设计9

  教学目标

  1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

  2.培养学生分析、综合的能力和操作能力.

  3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

  教学重点

  明确求平均数与平均分的区别,掌握求平均数的方法.

  教学难点

  理解平均数的概念,明确求平均数与平均分的区别.

  教学步骤

  一、铺垫孕伏.

  1.小华4天读完60页书,平均每天读几页?

  2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

  3.小明和小刚的体重和是160斤,平均体重多少斤?

  师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的'和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.

  二、探究新知.

  1.引入新课.

  以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.

  今天我们共同研究一下求平均数问题.(板书课题:求平均数)

  2.教学例2.

  (1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

  (2)组织讨论:你怎样理解水面的平均高度?

  (3)学生讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

  (4)学生操作.

  请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.

  (5)学生汇报操作结果,一般出现两种方法.

  第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

  164=4厘米,得出每杯水水面的平均高度是4厘米.

  第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.

  (6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

  (7)引导学生列式计算.

  (6+3+5+2)4

  =164

  =4(厘米)

  答:这4个杯子水面的平均高度是4厘米.

  小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

  (8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

  明确:复习题中,4厘米是平均分的。结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

  (9)反馈练习.

  小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

  3.教学例3.

  (1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

  (2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?

  (3)根据讨论结果,明确先求出每组的平均身高,再进行比较.

  (4)列式计算.

  第一小组的平均身高是多少?

  (136+142+140+135+137+144)6

  =8346

  =139(厘米)

  第二小组的平均身高是多少?

  (132+141+133+138+145+135+142)7

  =9667

  =138(厘米)

  第一小组的平均身高比第二小组的高多少?

  139-138=1(厘米)

  答:第一小组平均身高高一些,高1厘米.

  (5)反馈练习.

  一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?

  三、课堂小结.

  通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.

  四、布置作业.

  回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.

三年级数学《平均数》教学设计10

  一、内容和内容解析

  本节教学内容源于人教版八年级下册“20、1、1平均数”第一课时

  统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节、平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念、

  本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”、尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础、

  基于上述分析,确定本节教学重点是:

  以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题、

  二、目标和目标解析

  1、通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数、教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题、

  2、通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度、

  3、通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性、通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性、

  三、教学问题诊断分析

  1、教师教学可能存在的问题:

  (1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;

  (2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;

  (3)过分强调知识的获得,忽略了统计思想的.揭示和统计观念的建立;

  (4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高、

  2、学生学习中可能出现的问题:

  (1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;

  (2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情

  鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用

  四、教学支持条件分析

  在教学中要实现使学生理解加权平均数的意义和“权”的作用,恰当利用PPT的演示功能、Excel的数据处理功能,以及几何画板的动画和计算功能,通过设计简单的程序,直观、形象地展现“权”的意义和作用,感受过程的真实性,增强学生的参与程度、

  五、教学过程设计

  活动一:创设情景,建立模型,揭示概念

  问题1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义、

  在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

  (1)谈谈表格中“86分”所反映的实际意义、

  (2)求这两个班的平均成绩,并和同伴交流你的计算方法、

三年级数学《平均数》教学设计11

  教学内容:

  练习十一1—3题,教材42页例1

  教学目标:

  1、掌握平均数的意义和求平均数的方法

  2、知道移多补少求平均数的方法

  3、会根据数据列出算式求平均数

  教学重点:

  掌握求平均数的方法

  教学难点:

  正确计算平均数

  教具准备:

  课件,小黑板,统计表

  教学流程:

  一、导入

  拿8枝铅笔,指4名同学,要平均分怎样分?

  每人2枝,每人手中一样多,叫平均分。2是平均数

  二、学习交流

  1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

  (1)从图中,你知道了什么信息?

  (2)他们四人怎样分才能一样多?

  (3)平均分后是多少个?

  2、课件展示统计图的变化过程

  (1)指名展示

  (2)这种方法叫什么?

  点拨:移多补少

  3、要求平均数,还可以怎样想?

  (1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

  14+12+11+15=

  (2)平均分成4份,怎么办?

  52÷4=

  4、归纳

  要求平均数,可以先求出( )数,再平均分几份

  5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

  6、算出各小组的平均体重,说说你们是怎么算的?

  三、交流展示

  展示自己的学习成果,说清求平均数的'方法和过程

  四、达标测评

  1、练习十一第2题

  (1)什么是最高温度?什么是最低温度

  (2)你知道了哪些信息?

  (3)填写统计表:本周温度记录

  (4)计算出一周平均最高温度和最低温度

  (5)说说你是怎么算的?

  2、测量小组跳远成绩,求平均数

  五、总结

  通过这节课的学习活动,你有什么收获?

三年级数学《平均数》教学设计12

  教学目标:

  1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

  2、使学生认识统计与生活的联系,发展学生的实践能力。

  3、巩固求平均数的计算方法。

  教学过程:

  一、复习

  1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

  2、学生动手解决,并交流解决的方法。

  二、创设问题情景,引导探究。

  1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

  (1)组织交流解决的方法。

  (2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。

  2、出示情景图,告诉同学穿兰色衣服的'是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

  3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

  4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?

  5、组织交流计算的方法与结果。

  6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。

  三、拓展与应用

  说说生活中还有哪些事要通过求平均数来解决一些问题。

  四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

  五、作业练习十一4、5

【三年级数学《平均数》教学设计】相关文章:

《平均数》的教学设计01-20

小学数学四年级下册《平均数》教学设计02-14

数学教学设计06-29

数学教学设计07-02

《平均数》教学反思09-05

《平均数》教学反思06-07

数学教学设计心得02-05

数学教学设计及反思07-27

数学教学设计模板07-24