数学教学设计15篇
作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么你有了解过教学设计吗?以下是小编精心整理的数学教学设计,欢迎阅读与收藏。
数学教学设计1
通过学习研究新进展与有效教学实践的在线学习,我认识并学到了:1、专家知识在数量和组织方式、知识形态、提取速度等方面,具有自身的优越的特点,综合考虑了学生对学习心理,从心理学上,更准确的把握了学生的学习心理。2、迁移研究的新进展及迁移与学生学习的关系,让学生能更好、更容易接受的方式来教学。3、通过对学生对事物的了解和兴趣,让我们更加清楚的认识学生的努力,及对学生进行启发式教学,引导他们接受新知识、新事物。
通过参加培训,以网络为载体,打破地域局限,与全国的同行、专家、教授进行研讨和交流,深深的意识到,我的有些教学方法及学生的`学习习惯、学习方式等有些地方,还需要进一步的改善和提高。像大城市具有良好的教育资源,他们可以用VDR或者带学生出游,感受大自然和数学的联系,让学生亲身经历一些事情,更贴切生活的教学。同时也提高了学生的学习主动性。
平移与旋转的学习。
首先是介绍了图形的运动,通过介绍图形的运动,来引出运动的几个方面,一个是图形没有发生改变;一个是图形发生了改变。从而进一步引出了图形的平移与旋转,这种循序渐进的教学方法,能逐步的打开学生的思维,提高学生的兴趣,同时也让学生更容易的接受新的知识。
我想这就是一个新思维,新教学方法,从心理上,抓住学生的兴趣,逐步引导,来达到一种传输知识和开发兴趣的过程。
数学教学设计2
课程名称
《销售中的盈亏》
授课人
学校名称
教学对象
七科目数学
课时安排:
一、教材分析
本节是七年级数学上册一元一次方程中的实际问题,进一步以“探究”的形式讨论我们身边的生活问题。这一节课无论在知识上,还是对学生能力的培养上,都起着十分重要的作用。
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)
教学目标:
1、理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系。
2、能利用一元一次方程解决商品销售中的实际问题。
教学重点:
握盈亏问题中的等量关系,培养学生运用方程解决实际问题的能力。
教学难点:
根据问题背景,分析数量关系,找出可以作为列方程依据的相等关系,正确的列方程。
三、教学策略选择与设计
1、利用多媒体设计丰富多彩的图片,激发学生学习兴趣。
2、让学生分析、讨论、交流、归纳解决出问题,给学生留下自由探索的时间和空间。
四、教学过程
教学过程教师活动学生活动媒体设备资源应用分析
一、创设情境
二、探究新知
三、试一试
四、课堂小结
五、作业
1、商场商品的售价、进价、获利的一些情况
2、售价、进价、利润、利润率之间的关系例题解析
1、某商品的进价是200元,售价是260元。求商品的利润、利润率。
2、某商品的进价是200元,若售价是160元,则结果如何?
3、某商品的售价是60元,利润率为20%。求商品的进价。讨论交流对“盈利”、“亏损”含义的理解。利用公式解决简单的问题课堂总结:你能谈谈通过这节课的学习,你有哪些收获吗?
1、某商场为减少库存积压,以每件120元的价格出售两件夹克上衣,其中一件赚20%,另一件亏20%,在这次买卖中商场是盈利还是亏损,或是不盈不亏?
2、课本106页第1题。
3、练习册66页观看销售现场的一些图片,了解商品销售的一些知识,对售价、进价、利润有一定的理解。学生交流后,老师提出问题:某件商品的进价是60元,卖出后盈利20%,那么利润是多少?如果卖出后亏损20%,利润又是多少?(利润是负数,是什么意思?)盈利:售价>进价利润=售价-进价>0亏损:售价<进价利润=售价-进价<01、某商场为减少库存积压,以每件120元的价格出售两件夹克上衣,其中一件赚20%,另一件亏20%,在这次买卖中商场是()
A、盈利
B、亏损
C、不盈不亏
2、某商品现售价为80元,比原来售价降低了20%,原价是()
A、64元
B、96元
C、100元
3、一件衣服标价120元,八折优惠价卖出,仍获利20元,则这衣服的进价为多少元?
4、一件衣服标价120元,八折优惠价卖出,仍获利20%,则这衣服的进价为多少元?由学生概括本课中学到的知识,体现学生是学习的主动性。这些概念既可以让学生知道销售中的一些常用语,又可以为新课的.展开作好理论上的准备。这些问题以小组的形式分析、讨论、交流完成,充分发挥学生的主体作用。设计问题层层递进,强化了本节的重点利润率的计算公式以及它的变形公式。销售问题中的等量关系是本节学习的重点,是解决盈亏问题找相等关系的依据,要明确的提出来,并板书,有利于指导后面的学习。进一步理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系,巩固了本节的基础知识,也强化了本节课的重点,有利于培养学生分析问题、解决问题的能力。使学生能回顾、总结、梳理所学知识。
六、教学评价设计
本节利用一元一次方程来解决商品销售中的一些实际问题,要解决商品销售的利润率问题类型的应用题,首先要弄清商品利润、商品进价、售价、标价,打折的意义,以及它们之间的关系。教学设计中分析题目中的数量关系,找出能表示题目全部意义的相等关系,根据这个相等关系列出方程,求出方程的解。教学设计的流程合理。
七、课后反思
本课以学生已有的知识经验和生活中的实例入手引入新课,在新授过程中,以学生为学习的主人教师进行适当引导、点拔、启迪。在学生的自主探索、合作交流过程中弄清商品销售中的盈亏的算法。进一步对“进价”“标价”“售价”及“利润”的实际意义的理解。使学生深切感受到数学生活实际中的应用。从而激发他们学习数学的兴趣。另外学生通过对新授问题的估算,最后计算得出正确的结论,品尝到成功的喜悦,从而也激发了学生探求知识的欲望。
数学教学设计3
一、教学内容分析
①分析《课程标准》要求:在掌握宋明儒学内容及发展脉络的基础上了解其思想中的积极影响和消极影响,并逐步形成正确而客观的评价历史人物的方法;感受到中华民族的传统文化的继承和发展;树立正确的人生观和价值观。 ②分析本片断在本课和本单元中的地位:“宋明理学的影响”在本课的最后一段,对本课的内容起总结作用。而理学本身对于巩固专制皇权起了重要作用,但其禁锢人性的消极思想也成为明清时期批判思想的对象,这就为第四课《明清之际活跃的儒家思想》埋下伏笔。可以说本片断起了一个承上而启下的作用。
二、学情分析
基于前两课的学习,学生对于人物评价、史实分析归纳已有一定的认识。有一定的逻辑归纳能力,因此可采用问题教学法来调动学生主动学习的积极性。
三、教学目标
本课教学目标如下:
【知识与能力】①阅读课文中的材料,提炼其观点,比较程朱理学和陆王心学的异同。 ②通过对程朱理学、陆王心学及其思想发展脉络的学习,正解认识宋明理学及其在中国古代思想史上的重要地位。培养学生的辩证思维能力,形成对传统思想文化批判继承的意识。 【过程与方法】
按“学生自主活动”---“教师引导学生发现问题”---“学生解决问题”---“教师归纳讲解”模式进行;使用多媒体教学手段。
【情感态度与价值观】通过对宋明理学相关知识的学习,进一步加深对中华民族博大精深、源远流长的思想文化的理解,增强民族自信心和自豪感;初步形成对国家、民族的历史使命感和社会责任感,培养爱国主义情感,树立为社会主义现代化建设做贡献的人生理想。
四、教学重难点
重点:掌握程朱理学和陆王心学的主要内容和特点。
难点:理解理学和心学的思想内涵,正确评价程朱理学和陆王心学的历史地位。
五、教学过程
(一)补充下列材料,比较理解上一子目有关不同时期宋明理学代表人物的观点: 材料1 程颐:“天下只是一个理”“万物皆是理”;
“父子君臣,天下之定理”。
朱熹:“存天理,去人欲” 材料2 朱熹:“一事不穷,则阙了一事道理;一物不格, 则阙了一物道理”。 材料3 王守仁:“心即理”“知行合一” “致良知为圣人教人第一义”
1、材料1中的“理”指什么?他们认为“天理”与“人欲”是什么关系? (儒家伦理道德;对立关系。)
2、材料2和材料3中朱、王关于贯通明理的.途径有何差异?
(朱:“格物致知”,即通过实践、学习明事理; 王:“致良知”,即通过自我反思,回复良知,天理就在心中。)
(二)过渡到下一片断“宋明理学的影响”,投影以下材料:
名言名篇:文天祥“人生自古谁无死,留取丹心照汗青” 林则徐“苟利国家生死以,岂因
祸福避趋之” 张载“为天地立心,为生民立命,为往圣继绝学,为万世开太平”
翻开历史一查??满本都写着两个
字是“吃人” 。
“美丽 ”的三寸金莲
贞洁牌坊的背后是血泪
犹有怜之者;死于理,
“酷吏以法杀人,后儒以理杀人”“人死于法,
结合材料和所学知识,你如何看待宋明理学的作用?学生分组讨论后,自由发言。教师在学生回答的基础上完善如下:
积极方面:塑造了中华民族性格特征;重视主观意志力量;注重气节、品德;自我节制、发奋立志;强调社会责任和历史使命。
消极方面:①对维护专制主义政治制度起了重要作用;②用三纲五常压制、扼杀人们的自然欲求;③尊卑等级、重男轻女、重礼轻法、轻视自然科学等观念。
(三)拓展提升:对宋明理学应持什么态度 ? (批判、继承、改造;去粗取精,去伪存真)
(四)小结:宋明理学直承孔孟而继续发展,使之从传统思想上升为中国传统哲学。这种传统的中国哲学,是中国人对宇宙现象与人的生存原则的一种领悟和把握,并把这种基本精神贯彻于实践之中。孔孟儒学是中华传统文化的渊源和启蒙,程朱理学使中国哲学形成世界观和方法论的哲学体系。程朱理学是中国哲学史上的里程碑。我们要历史地辩证地看待宋明理学的作用。
反思:分析学情,适当补充具体事例,复杂的理论通俗化,贴近学生要求,是教师应当深思熟虑的问题。
数学教学设计4
一、学情分析
八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理
二、教材分析
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
三、教学目标设计
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
四、教学重点难点
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
五、教学方法
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
六、教具准备
课件、三角板
七、教学过程设计
教学环节1
教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的`数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
八、板书设计
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
九、习题拓展
如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
十、作业设计
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
数学教学设计5
一、设计理念
新课标指出:动手实践、自主探究、合作交流是学生学习数学的重要方式。因此我在教学中力求做到:引导学生联系自己的生活实际,提出相关的问题,并以独立思考、小组讨论、合作探究、小组汇报等学习方式解决问题,感受到解决问题策略的多样性,感悟到优化解决问题的方法,从中获得广泛的活动经验,提高自己的实践能力,增强数学的应用意识,感受到学数学、用数学的乐趣。
二、教学目标
(一)知识目标
利用大连旅游的丰富资源,结合学生的生活经验,创设情景让学生发现旅游中的数学问题,感受到生活中处处有数学,处处需要用数学,并在活动中感受到解决问题策略的多样性,感悟到优化解决问题的方法,从而培养学生应用数学知识计算、分析、解决问题的能力。
(二)能力目标
激发学生学习数学的兴趣,培养学生的合作意识和实践能力。
(三)情感态度价值观
培养学生养成勤俭节约的好习惯和热爱大自然的情感。
三、对课程的开发
为了有效地突出重点,突破难点,在教学上力求做到:
1、从学生的实际出发,运用现代教育技术,呈现丰富多彩的精美图片,让学生欣赏美丽动人的大连风光,为学生创设和谐的学习氛围,激发学生的学习热情,自主参与到学习活动之中。
2、联系学生的生活实际,创设旅游活动情景,让学生体会到数学与生活的密切联系。
3、以学生为本,改变学生的学习方式。鼓励学生独立思考、合作探究解决问题,让学生在活动中感受到解决问题策略的多样性,感悟到优化解决问题的方法,培养学生的合作意识和实践能力,体现学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
四、教学流程的构思
1、活用资源、激发兴趣、提出问题
《标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。”
从学生的实际出发,上课伊始,我就利用海旅游的丰富资源,结合学生的生活经验,主动和学生交流沟通,并运用现代教育技术,呈现丰富多彩的大连风光,为本课的学习创设一种和谐的氛围,激发学生的学习热情,自主参与到模拟旅游的活动中,积极为旅游前的准备工作出谋献策,并引导学生发现与本次旅游相关的问题,如:参加这样的集体旅游应考虑好哪些方面的问题?结合自己的生活经验,很自然地提出应考虑安全、租车、租房、吃饭、门票等问题。
2、创设情境、合作探究、解决问题
这是本课的中心环节,《课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节的设计主要以学生为本,模拟生活实际,逐一创设、租房、租车吃饭、门票4个活动情境,去大连那么远的地方,学生首先考虑的是租房问题,所以我创设租房情境,在设计租房方案前向学生设计了这个问题:租房要考虑好哪些方面的问题?旨在提醒学生讨论设计方案,要联系生活实际,弄清男、女生人数各是多少及各种房间的价格。使学生在小组合作讨论的过程中总结出怎么样租房最合算以上这一环节的活动,让学生感受到解决问题策略的多样性,感悟到优化解决问题的方法,使学生们体会到数学与生活的密切联系,掌握到一定的生活技能。
3、反思交流、形成技能、感受快乐
全课总结时问学生:“在这次的模拟旅游的活动中,你们发现了什么?有什么收获?”学生在反思交流中感受到学数学、用数学的乐趣,懂得数学的真价值,从中获得广泛的数学活动的经验,形成技能,为解决生活中的实际问题奠定基础。
五、教学设计
师:同学们,你们喜欢旅游吗?都去过哪?
生:答
师:老师也很喜欢旅游,祖国的山山水水神奇秀美,蕴藏着好多知识,在旅游中,老师还发现会遇到好多数学问题呢
师:这节课王老师就带大家去一个美丽的地方(出示课件),你们知道这是哪?
生:大连
师:想去吗?
生:想去
师:可是要去大连这么远的地方,我们不能说去就去,还有许多问题需要考虑,请大家仔细想一想,我们都需要考虑哪些问题?
生:随意回答
师:千里之行,始于足下,你们打算怎么去?
生:做火车
师:老师这里有一张车票,请你仔细观察,在车票上你能读到哪些信息?
生:哈尔滨开往大连的'车票,起车时间为9:00
师:大家观察的真仔细。现在就请大家带上车票和老师一起踏上哈尔滨开往大连的火车吧。(出示课件,播放信息)
师:在列车员的介绍中,你得到了哪些信息?
生:晚九点从哈尔滨发车,第二天早上六点到达大连站,列车每小时行驶103千米
师:那你能不能利用你得到的信息算一算我们从哈尔滨到大连需要坐多长时间的火车?
生:九个小时
师:你是怎样算出来的?
生:晚九点到早九点经过十二个小时,再减去三个小时就是九个小时
师:你的回答真不错。我们需要坐这么久的火车,大家想不想知道从哈尔滨到大连到底有多远呢?现在就请你拿出练习本算一算,看谁算得又对又快。
师:你是怎么样计算的?
生:103*7=927
师:同学们的回答到底对不对呢?我们来听听列车员的回答。(播放课件)
师:大连站到了(播放课件)
师:坐了这么久的火车,你们一定很累了是吧?现在你们最想做的是什么?
生:找个地方休息
师:好,现在王老师就带大家找住的地方好不好?
生:好
师(播放课件)来到旅店,你看到哪些信息:
生:4人间80元,3人间66元
师:由于我们人数太多,只能安排13名男生和11名女生住在旅店的一层,既然是租房,我们就要考虑怎样租房合算,你们对合算这个词是怎么理解的呢?
生:合算就是便宜
师:你的理解没有错,那么我们就先来讨论一下男生的租房方案,看一看男生怎样租房最合算,好不好?
师:在考虑男生租房问题之前啊,王老师先请同学们看一个表格,(课件)仔细观察一下,你能不能读懂表格?
生:(说明表格的意思)
师:理解了表格的意思,现在就请同学们结合这个表格在小组内设计一下男生的租房方案,注意思考,男生怎样租房最合算
生:小组讨论
师:现在请小组派大表汇报一下你们设计的租房方案
生:汇报方案
师:你认为哪种方案最合算?
生:第四种
师:为什么
生:因为它最便宜
师:请大家再结合表格考虑一下,为什么这么多种方案,只有这种方案最便宜?
生:因为它正好住满了13人,没有空床位
师:也就是说,因为它正好住满了13人,没有空床位,所以它的价钱最便宜,也就最合算,是吗?
生:是
师:同学们的回答很有道理,现在你们知道怎样租房最合算了吗?
生:只要没有空床位就可以了
师:好,知道了这个道理,现在就请你用最快的速度来设计一下女生怎样租房最合算,可以独立思考,也可以在小组内完成。
生:思考
师:你认为怎样设计女生的租房方案最合算?
生:租两个4人间,一个3人间最合算
师:为什么这样设计
生:因为它正好住满了11人,没有空床位,所以它最合算
师:同学们可聪明,通过自己的努力就设计出了男生和女生的租房方案,那剩下的15名男生和18名女生怎样租房最合算?请男女生分别进行设计
生:小组合作设计方案
师:那么在这节课的学习中,你有什么收获?
生:谈收获
师:是啊,同学们,生活中处处有数学,只要我们细心去观察,大胆去探索,努力去解决,一节课短短四十分钟时间远远不够我们欣赏大连的美景,下节课我们将继续我们的大连之旅,最后,让我们一起提前来欣赏一下大连的美丽风光,在这如诗如画的美景中结束这四十分钟的旅行。
数学教学设计6
我们的数学课堂学什么?计算、算理、概念……,是的这些基础数学知识对一个人的数学素质是非常重要的,但它是不是惟一决定性因素呢?是不是影响我们学生以后一生的学习、生活、工作呢?联合国教科文组织数学教育论文专辑中中曾叙述这样的一个典型的例子:我们能确定三角形面积公式一定重要吗?很多人在校外生活中使用这一公式至多不超过一次。
21世纪国际数学教育的根本目标是“问题解决”,要解决我们学生过去、现在、将来所遇到的种种问题,他们所需的不仅仅是知识,而是比知识更重要的数学思想。
一、什么是数学核心思想
数学核心思想,是指在对数学本质的认识中起核心作用的基本数学思想和数学观念。基本数学思想有:符号与数的表示思想、集合思想、对应思想、合理化思想和结构思想等。数学观念主要有推理意识、化归意识、抽象意识和整体意识等。在数学问题解决中,当情境稍有变化时,主体常会感到束手无策,如果有数学核心思想来调控数学方法,则往往可以超越这个特定的情境。摘自《学与教的心理》高等教育出版社。
二、什么是教学设计
教学设计是运用现代学习、教学、传播等方面的理论与技术,针对特定的教学对象和教学目标,来分析教学问题、寻找解决方法、评价教学效果以及修改执行方案的系统过程。它是为了达到一定的教学目标,对教什么(课程内容)和怎样教(教学组织、模式选择、媒体选用等)所进行的设计。
三、数学核心思想在教学设计中的体现
数学思想不是孤立存在的,如果说基础知识是躯体的话,那数学思想就是躯体的灵魂。数学活动过程是渗透数学思想的载体,而教学设计则应以数学核心思想的渗透为重要依据。教师在教学设计时,要根据教学内容认真分析本课的数学核心思想,围绕数学核心思想确立教学目标、教学重难点以及突破重难点的方法。
(一)数学核心思想为教学设计的路标
美国学者马杰认为,教学设计由三个基本问题组成:首先是“我要去哪?”即制定教学目标;做为一个教育者要把学生带到哪里去,是至关重要的。数学核心思想的确立,教育者会在教学设计中,把这一思想蕴含到教学教学活动之中去,有了灵魂的教学活动会激发学生思维的火花。
例如二年级下册《生活中的大数》数学核心思想:十进制,位值制
历史上,无论美国、加拿大,还是在世界上别的国家,数都被认为是数学课程的`基石。这学前至十年级的数学都扎根在这块基石上。代数中的解方程原理和数系中的结构特征一致,几何和度量特性是用数字描述的。(摘自美国数学教育的原则和标准)全国数学教师理事会著人民教育出版社。)
根据这一数学核心思想设计这样一组教学活动:
1、通过数据模型建立“千”和“万”的概念。
出示了一个由一千个小正方体组成的大正方体,让学生先猜一猜,后分层数一数一共有多少个小正方体?接着数10个一千个小正方体,认识10个一千是一万,再通过对比一万和一千、一千和一体会1万和1千。通过课件回忆数的过程,发现十进制,从而告诉学生十进制是中国人发明的,现在全世界都在使用,激发学生的爱国情感。
2、通过“测量长度”数一些数量较大实物的活动让学生进一步体会“十进制”从而培养学生的数感。
在练习中让学生数大约一万个豆子,这时孩子肯定不一个一个数,也不会十个十个的数,(学生认为这样比较麻烦)。这时出示二百个豆子,并把它放在一个透明的杯子里,学生受到启发用,量出二百个豆子的高度,然后画出4个同样的高度,迅速的数出大约一千个豆子,同时可以想到用同样的方法能数出一万个豆子。
3、通过用10个一百厘米展示一千厘米有多长,培养学生的空间观念。
学生通过用10个一百厘米展示一千厘米有多长,利用十进制建立长度之间的关系,之后让学生想一想一万厘米有多长?一万米有多长?为后面学习千米打下了良好的基础,同时培养了学生的空间感。
数学教学设计7
教学目标
1、认识连加,理解连加的意义,初步渗透部分与整体的相对性。
2、通过教学中的游戏,让学生掌握连加计算的方法,并体验算法的多样化。
3、学习过程中感受数学与生活的联系,培养学生对数学的情感。
教学重点
理解连加的意义,掌握连加的计算方法
教学难点
明确整体与部分的相对性
教学过程
一、抢答游戏复习10以内的加法(引出本节课所要学习的问题)
1+2=
3+2=
5+2= 3+1=
5+1=
7+1=
二、情景导入,揭示连加含义
初步理解连加的含义
教师:老师要给大家介绍一位新朋友明明,明明是个爱劳动的孩子,瞧,明明在干什么呢?(呈现65页第一幅情境图)
三、探究连加的计算方法
教师(出示5+2+1):这个算式读作“5加2加1”学生齐读算式:5加2加1教师:5+2+1怎么算呢?先想一想,再和前后桌说一说教师:谁来说说你是怎么算的.?学生:先算5+2=7,再算7+1=8教师重复,边说边在算式上标出运算顺序,完成如下板书
教师:
5、2、1各表示什么?谁来说一说
学生:5表示先来的5只小鸡,2表示后来的2只小鸡,1表示最后来的1只小鸡
教师:8表示什么?
学生:8表示一共来的小鸡。
教师:你们看明白了吗?
四、巩固练习,动手操作
摆一摆,让学生动手操作,先拿出4根,再拿出2根,最后拿出3根。共拿出了几根?列算式说得数。说说先算什么,再算什么。
五、拓展练习
小猫钓鱼
送花花回家
六、总结
数学教学设计8
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的'经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
四、教育理念和教学方式:
1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3.教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、教学媒体:
多媒体
六、教学和活动过程:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题
1.[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2.[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3.[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2.判断:
()① (a-2b)2= a2-2ab+b2 ()
② (2m+n)2= 2m2+4mn+n2 ()
③ (-n-3m)2= n2-6mn+9m2 ()
④ (5a+0.2b)2= 25a2+5ab+0.4b2 ()
⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ()
⑥ (-a-2b)2=(a+2b)2 ()
⑦ (2a-4b)2=(4a-2b)2 ()
⑧ (-5m+n)2=(-n+5m)2
3.小试牛刀
① (x+y)2 =______________;
② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;
④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;
⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;
⑧ (a-0.6b)2 =_____________.
〈四〉、学生小结
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业]
p34 随堂练习
p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。
1 . 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性;
2 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理;
3 . 教学媒体使用适时、适量、适度、有效。
4 . 教学结构组合优化,优质高效。
数学教学设计9
(一)提出问题,导入新课
1、解二元一次方程组
问题
1、母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?
解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得
26+x=3x 解法二:设母亲的'年龄为x岁。 由题意得
x=3(x-26)
(二)精选讲例,探求新知
例
2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?
巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。
(三)变式训练,激活学生思维
问题
3、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题
4、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的方案是否合理,并通过计算说明。
(四)课堂练习,巩固新知
1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。
2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。
(五)拓展
1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?
2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。
⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。
数学教学设计10
教学设计示例
运用公式法――完全平方公式(1)
教学目标
1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2.理解完全平方式的意义和特点,培养学生的判断能力.
3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.
4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。
教学重点和难点
重点:运用完全平方式分解因式.
难点:灵活运用完全平方公式公解因式.
教学过程设计
一、复习
1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4.
解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n).
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式.
请写出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
这节课我们就来讨论如何运用完全平方公式把多项式因式分解.
二、新课
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1.
答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) .
(2)不是完全平方式.因为第三部分必须是2xy.
(3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) .
(4)不是完全平方式.因为缺第三部分.
请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y.
例1 把25x4+10x2+1分解因式.
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.
解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2 把1- m+ 分解因式.
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的`相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.
解法1 1- m+ =1-2·1· +( )2=(1- )2.
解法2 先提出 ,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2.
三、课堂练习(投影)
1.填空:
(1)x2-10x+( )2=( )2;
(2)9x2+( )+4y2=( )2;
(3)1-( )+m2/9=( )2.
2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式.
(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4.
3.把下列各式分解因式:
(1)a2-24a+144; (2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2.
答案:
1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.
2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.
(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.
(3)是完全平方式,a2-4ab+4b2=(a-2b)2.
(4)是完全平方式,9m2+12m+4=(3m+2) 2.
(5)是完全平方式,1-a+a2/4=(1-a2)2.
3.(1)(a-12) 2; (2)(2ab+1) 2;
(3)(13x+3y) 2; (4)(12a-b)2.
四、小结
运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.
2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.
五、作业
把下列各式分解因式:
1.(1)a2+8a+16; (2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4.
2.(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.
3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4.(1) x -4x; (2)a5+a4+ a3.
答案:
1.(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)(y+12)2.
2.(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2; (4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2.
3.(1)(mn-1) 2; (2)7am-1(a-1) 2.
4.(1) x(x+4)(x-4); (2)14a3 (2a+1) 2.
课堂教学设计说明
1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.
2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.
数学教学设计11
第一单元 负数
第一课时 负数的认识
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重点:负数的意义。
教学难点:负数的意义。
课前准备:
学生搜集生活情境中负数有关资料,如气温、收支,股票涨跌等。 教学课时:1课时
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;银行有存钱和取钱……你能举出一些这样的现象吗?(课件2、3、4、5、6)
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。(课件7)
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
(2)尝试:怎样用数学方式来表示这些相反意义的量呢?(课件8)
请同学们选择一例,试着写出表示方法。
2.认识正、负数。
(1)引入正、负数。(课件9)
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的`数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)说一说。(课件10)
生活中还有能用正负数表示的例子吗?
4.进一步认识“0。” (课件11)
以温度计为例,观察“0”的作用?
结论:0既不是正数,也不是负数。(板书)
5、联系生活中的气温;进一步感受正负数的应用。
(1)介绍温度计相关知识。(课件12、13)
(2)一次读出4个城市的温度。(课件14、15、16、17、18)
三、练习应用
(1)辩一辩:
“16℃”和“-16℃”的意义相同吗?(课件19、20、21、22)
(2)做一做:指出下面数中的正负数。(课件23)
(3)填一填:珠穆朗玛峰和吐鲁番盆地海拔高度。(课件24)
四、课堂小结:(课件25)
五、课外拓展:
负数的历史。(课件26、27、28、29、30)
六、板书:
负数的初步认识
像“-6”这样的数叫负数,读作:负六。“-”,叫“负号”。
像“+6”这样的数叫正数,读作:正六。“+”,叫“正号”。也可省略不写。 0既不是正数,也不是负数。
课后反思:
第二课时 比较正数和负数的大小
教学目的:
1.借助数轴初步学会比较正数、0和负数之间的大小。
2.初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1.读数,指出哪些是正数,哪些是负数?
43-85.6 +0.9 -+ 0-82
2.如果+20%表示增加20%,那么-6%表示 。
3.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
二、新授:
(一)教学例3:
1.怎样在数轴上表示数?(1.2.3.4.5.6.7)
2.出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的第1.2题。
(二)教学例4:
1.出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2.学生交流比较的方法。
3.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4.再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5.再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6.总结:负数比0小,正数比0大,负数比正数小。
7.练习:做一做第3题。
三、巩固练习
1.练习一第4.5题。 2.练习一第6题。
3.实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
课后反思:
数学教学设计12
教学目标:
1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正比例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点:
能根据数量关系式或图象判断两种量是否成正比例。
教学准备:
投影仪。
教学过程:
一、新课讲授
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
二、练习讲授
1、基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的`方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2、指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
三、课堂作业
1、根据x和y成正比例关系,填写表中的空格。
2、看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
课堂小结:
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
课后作业:
完成练习册中本课时的练习。
板书设计:
正比例图像
图像:一条过原点的直线。
数学教学设计13
活动目标:
一、巩固红黄蓝三原色的认识,学习按物体的大小、颜色进行分类,在游戏中发展数数能力。
二、乐意与同伴交流,乐意参与游戏,乐意体验共同活动的快乐。
活动准备:
1、大猫、小猫(蓝色、黄色)的胸卡若干。
2、红、黄、蓝小鱼若干、一大一小锅子各一。
3、小篓子人手各一。
活动过程:
一、开始部分:让幼儿自主选择角色,巩固黄蓝两种颜色的认识,并导入活动。
1、扮演角色:小朋友,我是猫妈妈,你们都是我的猫宝宝,妈妈这儿有许多小猫的胸卡,喜欢做蓝猫的就找蓝色的小猫卡片挂上,喜欢做黄猫的就找黄色的卡片挂上。挂好卡片赶紧找个圆点坐下来。
2、找宝宝:呀,你们都是我的宝宝啦!开心吗?开心的就叫一声猫叫?让我瞧一瞧,你是什么颜色的小猫啊?还有谁也是小蓝猫呢?小蓝猫来让妈妈抱一下,我们亲亲热热一家人,开心吗?开心的就大声地叫两声。妈妈的小黄猫在哪里?也来让妈妈抱一下。开心的`叫三声?
3、选择路线
师:宝宝们,你们长大了,能告诉妈妈你们有什么本领?好,今天妈妈在草地上晒了许多鱼干,想请你们帮妈妈去收鱼干,愿意吗?去草地有两条路,一条是黄色的,一条是蓝色的,我们的黄猫、蓝猫该走哪条路呢?赶快到路口排队。过渡:听着音乐小猫跟猫妈妈去草地。
师:宝宝们,跟着妈妈去草地吧,路上不能你推我挤,注意安全。我们一个跟着一个走。
二、基本部分
一)小猫收鱼干,巩固对三原色的认识,发展三以内的数数能力。
(1)师:宝宝们,草地到了,你们看妈妈晒的鱼干多吗?有些什么样的鱼干呢?(引导幼儿说出颜色不同)现在我们可以收鱼干啦!在草地上当心把小草踩坏了,也不能摘小草。小猫们爬一爬,找一找,一只小猫收一条鱼干。你收到的是什么颜色的鱼干呢?快把收到的鱼干放在口袋里吧。收到鱼干高兴吗?用动作表示一下:耶!
(2)请宝宝们爬一爬,找一找,收一条跟自己一样颜色的鱼干。并请小猫相互检查一下收的鱼干是否正确。
(3)请每只小猫去收一条红色的大鱼干。你收到了一条什么样的鱼干呢?
师:呀,还有些鱼干请猫阿姨给我们收吧,不早了,我们也该回家了。看看哪条路大,哪条路小?请黄猫在大一点的路上走,蓝猫在小一点的路上走(听音乐动作)
二)小猫数鱼干,感知三以内鱼干的数量。
(1)、师:到家了,每只小猫把口袋里的鱼干倒在小筐里,数数看你收了几条鱼干。(每人自己数--师幼一起数)还有谁也是收到3条鱼干呢?
(2)、你收到的红鱼干给妈妈看看,有几条呢?(让幼儿自己数数)你收到的黄鱼干给妈妈看看,有几条呢?(让幼儿数数)你收到了几条蓝鱼干?(目测)
三)小猫烧鱼,按大小给鱼干分类
(1)师:宝宝们,肚子饿吗?妈妈来烧鱼干给宝宝吃,好吗?你们看妈妈这儿有几只锅子?两只一样大吗?大鱼干应该放哪个锅子烧?小鱼干放哪个锅子?请你们把手中的鱼干一条一条放进锅里。大鱼干放在大锅里,小鱼干放在小锅里。
(2)幼儿放鱼,老师对幼儿的行为做即时的检验:是否放对了大鱼和小鱼。儿歌:小猫小猫要烧鱼,大鱼放在大锅里,小鱼放在小锅里。
师:呀,两只锅里现在变成许多鱼了。
三、结束部分
师:鱼儿烧好了,香喷喷的,真好吃啊!瞧!宝宝们想尝一尝吗?来跟着妈妈一起去洗手,吃鱼干喽!
活动延伸:游戏《卖鱼》
数学教学设计14
这堂课给人的感觉是水到渠成,如沐春风,教师教得亲切,自然,活泼,学生学得轻松愉快,有以下优点值得我们学习:
1、教学设计新颖别致,整堂课不觉得在学,而觉得是一堂套圈的活动课,学生是参与者,教师是评委,在玩中学,比生硬的说理更让人信服,更富有感染力,哪个学生不好玩,不好动?这堂课满足了学生的兴趣,所以气氛也相当的活跃,无疑,教学设计是成功的。
2、教学流程生动,流畅,层次感强。如三次套圈,每次的目的都不同,第一次引出连加,第二次引出连加中的进位,教师并进行重难点引导,第三次是估算,也是在游戏中进行,为后来的环节打下基础,最后,用600元钱买价格不同的动物娃娃,够不够?将连加运用到生活中,一气呵成,环环相扣,层层铺垫,教学环节相当严谨。
3、学生真正成为了学习的主人。让学生动手实践,自主探究,合作交流,是新课标倡导的`学习方式,这节课也把权力下放,教师只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,激活他们的思维,如套圈比赛,男女生竞争,提高了学生的主动参与的面和质量,让人觉得是学生在推波助澜,学生们自主合作完成了学习任务,有一点启发:只要教师放开你呵护的双手,就会发现,孩子也是一个发现者,研究者,探究者。
几点建议:
一、生活中处处有数学,能否多举几个例子;
二、在学生上台套圈时,能否交给台下的同学一些任务,如让他们算结果等;
三、课堂要有小结,但这堂课的小结过于匆忙,流于形式
数学教学设计15
教学目标:
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学过程:
一、谈话导入
1. 出示苹果、梨、橘子的图片 问:起一个总的名称是什么?
2. 出示:仿照第一题填空
(1)时间:3小时 20分 2小时45分
(2)总价:5元 ( ) ( )
(3)( ):6千克 800克 3吨350克
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课
(一)相关联的量
教师做实验,向弹簧称上加钩码问:
(1) 这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的.两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
(二)学习成正比例的量
1、出示19页表格
观察图像,填表,回答下面的问题:
(1) 表中有哪两个相关联的量?
(2) 正方形的周长是怎样随着边长的变化而变化的?
(3) 正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报
2、20页第2题
3、正比例的意义
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说 指生回答 阅读课本
师板书关系式:y/x=k(一定)
(2) 那么,要判断两种量是否成正比例的量该看什么呢?
三、 巩固提高:19页说一说。
四、 全课小结
【数学教学设计】相关文章:
数学教学设计07-02
数学教学设计07-21
数学教学设计心得08-12
《数学广角》教学设计10-05
数学周长教学设计08-23
【合集】数学教学设计05-26
小学数学教学设计09-01
小学数学教学设计08-01
数学下册教学设计08-07
小学数学的教学设计08-19