大学物理波动光学总结
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如我们来制定一份总结吧。如何把总结做到重点突出呢?下面是小编整理的大学物理波动光学总结,仅供参考,希望能够帮助到大家。
大学物理波动光学总结1
关键词:人文教育 物理学史 环境保护 教师素养
中图分类号:G4 文献标识码:A 文章编号:1672-3791(20xx)01(a)-0212-01
朱永新教授在《中国的教育缺什么?》一文中曾深刻地指出:“中国教育缺人文关怀……在培养人才的时候,越来越注重人才的政治、经济价值,而忽视了人本身的存在价值。”大家越来越多地把人作为一个工具,而不是把人当作人,以致现在人多处于“信仰真空”地带并伴随很多负面社会现象丛生。今天我们所倡导的“人文”,它具有更适合于现代人类共同利益的内涵,坚守道义和责任,向往真善美,尊重人,爱护人并爱护和关心人类的文化。
当前院校的学生年龄多属“90后”,这代人成长环境相对优越,社会环境却相对复杂。他们追求高物质的生活享受,很多人把游遍天下山水,吃遍天下美食当成自己生活的目标。在教育工作者看来他们失去了远大的理想,失去了自己的文化根基,变得心情浮躁,没有责任心。而责任和理想这些概念又都可归属于人文层面,我们在教学活动中应根据自身学科的特点,多给予学生人文关怀,帮助学生成为具有深厚人文素养的人。
物理教学具有大量人文教育的素材,教学中应善于发现总结并加以利用。
1 利用物理学史丰富学生的哲学认识,增强人文关怀
物理规律本身就充满了辩证哲学,在人类探知物理规律的过程同样充满辩证哲学。在对学生进行树立辩证唯物主义世界观教育时,物理学史提供了生动且丰富的素材。所以,将物理学史的哲学原理引入课堂,在教学过程中,引导学生利用辩证唯物主义思想分析阐述一些抽象的物理概念,这样可以在激发学生学习兴趣的基础上培养科学的世界观,达到教育教育的目的。
例如波粒二象性理论,该理论以及其发展史就可以作为辩证思想的生动教材。人类直到17世纪,才在长时间探索光本性之后形成微粒说和波动说两种对立说法。因为当时的实验找不到有力的证据,并且威望崇高的牛顿也支持微粒说,所以微粒说统治了光学领域一百多年。一直到杨氏双缝干涉实验成功,建立惠更波斯动理论,法拉第发现偏振光,才在磁场中发现了旋转,揭秘了光核电的内部联系,麦克斯韦提出电磁说建立电磁理论,赫兹的.实验也确定了存在电磁波,光的波动说得到空前的完善发展,光的微粒说被逼成死路。
然而,正像辩证法所告诉我们的那样,事物的发展不是直线式的而是波浪式、螺旋式地向前发展,矛盾双方在一定条件下又相互转化。恰恰是在把光的波动说推向顶峰的赫兹实验中,意外地发现了光电效应现象。进一步实验研究发现,波动说在光电效应规律中遇到了无法逾越的障碍。事物走向了反面,微粒说又抬头了。这时爱因斯坦运用普朗克的原始的量子理论提出了光子说,解释了光电效应规律,并进一步科学地把光的微粒说和波动说归纳总结为对立统一的波粒二象性,在多位科学家的努力下使宏观上对立的波动性和粒子性在微观世界中得到了很好的统一。
物理学史告诉我们,波粒二象性理论的发展过程是一个辩证的否定过程,矛盾着的两个方面在一定条件下可以相互转化,物理学史的引入,可以使科学的内容和思想内容有机结合,把物理规律的学习上升为科学的世界观和方法论的学习,在物理教学中产生积极的效果。
2 利用与社会生活联系密切的内容,突出人文意义
例如关爱环境已是不容忽视的问题。随着社会发展人类需求增多,人与环境自然已出现不和谐迹象。物理课程学习过程中,存在很多与环境相关的知识,教学过程中应该及时挖掘这些知识含有的环保教育意义,与学生一起讨论学习,提高学生环境保护意识,培养学生对人类自身生存的终极关怀。
举例:地球大气中为何没有氦气和氢气而富含氮气和氧气(出自王国栋《大学物理学》气体动理论一章)
按照方均根速率公式计算氦原子和氮气分子在20℃时的方均根速率,会得到:
地球表面的逃逸速度为11.2 km/s,以上结果中氦原子的方均根速率约为此逃逸速度的1/8,而氢气分子的方均根速率约为此逃逸速度的1/6.现在知道宇宙中原始的化学成分大部分是氢气(约占总质量的3/4)和氦(约占总质量的1/4),正是由于相当数目的He原子H2分子的方均根速率超过了逃逸速率,它们不断逃逸,如今地球大气中就几乎没有氢气和氦气了。氮气和氧气分子的方均根速率只有逃逸速率的1/25,这些气体分子逃逸的可能性就很小了,于是地球大气中今天就保留了大量的氮气和氧气。
扩展:在30亿年前,地球大气中CO2浓度比现在高10倍,而O2的浓度大约只有现在的千分之一。随着绿色植物的产生进化,植物通过光合作用有效地吸收CO2而放出O2,使大气中氧气的浓度迅速增加,CO2浓度大量减少,经过几十亿年的演化形成适合人类居住的大气环境,因此,大气中较低的CO2浓度是大自然长期进化的结果,我们应倡导低碳生活保护环境。
教学中要有意识地进行渗透和延伸,不失时机的把物理知识的学习和环境保护的教育有机结合起来,把环境保护教育作为一项德育目标去实施,使得学生们关爱自己、关爱生命、关爱社会和自然。
3 利用教师的人格魅力陶冶学生人文性情
3.1 教师的学术之美
学术美指教师身上所散发的学者气息而非匠气。努力做一个学者型专家型教师,不仅要精通本专业的知识,还要有广博的其他学科知识,同时具备教育学心理学的知识,另外还要时刻关注本学科及教育领域的前沿动向。教师不仅教书育人,同时也是教育研究者。教师的论文、教学设计、学术讲座、公开课的展示、课题研究、实验的开展无不透出学术之美,学生自然感受到一种学术氛围,对学生进行着“润物细无声”的人格教育。
3.2 高尚的职业道德
教师应该把教学作为自己终生努力的事业,而不仅仅是谋生的职业。把教学作为事业来追求,才会产生努力的欲望,工作的热情,远大的目标,才会对学生、教学活动、校园自己的兴趣和爱心。实践证明,许多学生会受到教师对某事物热爱的感染,由此选定人生的目标,形成对生活的理解和态度。因此教师在教学活动中既要美其道又要慎其行,为人师表谨记于心。
4 结语
学生人文素养的形成是一个长期、复杂的过程,影响因素还有很多,在教学过程中,教师要善于抓住合适的时机,遵循物理教学原则,综合运用各种方法,适时适量的在教学过程中渗透人文精神的教育,使学生的科学素养和人文素养有机结合,既要防止单纯进行知识教学,忽视思想教育的倾向,又要反对脱离教材内容,把思想教育变成空洞说教的做法。
参考文献
[1] 朱永新.中国的教育缺什么[J].中国校外教育理论,20xx(1).
大学物理波动光学总结2
可是,光究竟是一种什么东西?或者,它究竟是不是一种“东西”呢?
远古时候的人们似乎是不把光作为一种实在的事物的,光亮与黑暗,在他们看来只是一种环境的不同罢了。只有到了古希腊,科学家们才开始好好地注意起光的问题来。有一样事情是肯定的:我们之所以能够看见东西,那是因为光在其中作用的结果。人们于是猜想,光是一种从我们的眼睛里发射出去的东西,当它到达某样事物的时候,这样事物就被我们所“看见”了。比如恩培多克勒就认为世界是由水、火、气、土四大元素组成的,而人的眼睛是女神阿芙罗狄忒用火点燃的,当火元素(也就是光。古时候往往光、火不分)从人的眼睛里喷出到达物体时,我们就得以看见事物。
但显而易见,这种解释是不够的。它可以说明为什么我们睁着眼可以看见,而闭上眼睛就不行;但它解释不了为什么在暗的地方,我们即使睁着眼睛也看不见东西。为了解决这个困难,人们引进了复杂得多的假设。比如认为有三种不同的光,分别来源于眼睛,被看到的物体和光源,而视觉是三者综合作用的结果。
这种假设无疑是太复杂了。到了罗马时代,伟大的学者卢克莱修在其不朽著作《物性论》中提出,光是从光源直接到达人的眼睛的,但是他的观点却始终不为人们所接受。对光成像的正确认识直到公元1000年左右才被一个波斯的科学家阿尔·哈桑所提出:原来我们之所以能够看到物体,只是由于光从物体上反射到我们眼睛里的结果。他提出了许多证据来证明这一点,其中最有力的就是小孔成像的实验,当我们亲眼看到光通过小孔后成了一个倒立的像,我们就无可怀疑这一说法的正确性了。
关于光的一些性质,人们也很早就开始研究了。基于光总是走直线的假定,欧几里德在《反射光学》一书里面就研究了光的反射问题。托勒密、哈桑和开普勒都对光的折射作了研究,而荷兰物理学家斯涅耳则在他们的工作基础上于1621年总结出了光的折射定律。最后,光的种种性质终于被有“业余数学之王”之称的费尔马所归结为一个简单的法则,那就是“光总是走最短的路线”。光学终于作为一门物理学科被正式确立起来。
但是,当人们已经对光的种种行为了如指掌的时候,却依然有一个最基本的问题没有得到解决,那就是:“光在本质上到底是一种什么东西?”这个问题看起来似乎并没有那么难回答,但人们大概不会想到,对于这个问题的探究居然会那样地旷日持久,而这一探索的过程,对物理学的影响竟然会是那么地深远和重大,其意义超过当时任何一个人的想象。
古希腊时代的人们总是倾向于把光看成是一种非常细小的粒子流,换句话说光是由一粒粒非常小的“光原子”所组成的。这种观点一方面十分符合当时流行的元素说,另外一方面,当时的人们除了粒子之外对别的物质形式也了解得不是太多。这种理论,我们把它称之为光的“微粒说”。微粒说从直观上看来是很有道理的,首先它就可以很好地解释为什么光总是沿着直线前进,为什么会严格而经典地反射,甚至折射现象也可以由粒子流在不同介质里的速度变化而得到解释。但是粒子说也有一些显而易见的困难:比如人们当时很难说清为什么两道光束相互碰撞的时候不会互相弹开,人们也无法得知,这些细小的光粒子在点上灯火之前是隐藏在何处的,它们的数量是不是可以无限多,等等。
当黑暗的中世纪过去之后,人们对自然世界有了进一步的认识。波动现象被深入地了解和研究,声音是一种波动的认识也逐渐为人们所接受。人们开始怀疑:既然声音是一种波,为什么光不能够也是波呢?十七世纪初,笛卡儿在他《方法论》的三个附录之一《折光学》中率先提出了这样的可能:光是一种压力,在媒质里传播。不久后,意大利的一位数学教授格里马第做了一个实验,他让一束光穿过两个小孔后照到暗室里的屏幕上,发现在投影的边缘有一种明暗条纹的图像。格里马第马上联想起了水波的衍射(这个大家在中学物理的'插图上应该都见过),于是提出:光可能是一种类似水波的波动,这就是最早的光波动说。波动说认为,光不是一种物质粒子,而是由于介质的振动而产生的一种波。我们想象一下水波,它不是一种实际的传递,而是沿途的水面上下振动的结果。光的波动说容易解释投影里的明暗条纹,也容易解释光束可以互相穿过互不干扰。关于直线传播和反射的问题,人们很快就认识到光的波长是很短的,在大多数情况下,光的行为就犹同经典粒子一样。而衍射实验则更加证明了这一点。但是波动说有一个基本的难题,那就是任何波动都需要有介质才能够传递,比如声音,在真空里就无法传播。而光则不然,它似乎不需要任何媒介就可以任意地前进。举一个简单的例子,星光可以穿过几乎虚无一物的太空来到地球,这对波动说显然是非常不利的。但是波动说巧妙地摆脱了这个难题:它假设了一种看不见摸不着的介质来实现光的传播,这种介质有一个十分响亮而让人印象深刻的名字,叫做“以太”。
【大学物理波动光学总结】相关文章:
视光学的求职信12-04
视光学求职信11-16
大学物理演示实验报告12-04
视光学求职信15篇12-27
体育课总结_体育总结07-17
学期总结07-02
医德总结07-28
there are的用法总结08-12
工程总结05-31