《圆的周长》教学设计
作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。如何把教学设计做到重点突出呢?下面是小编帮大家整理的《圆的周长》教学设计,欢迎阅读,希望大家能够喜欢。
《圆的周长》教学设计1
教学内容:新课标人教版小学数学六年级上册第四单元p62----64页
学习目标:
知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
教学重难点和关键:
重点:推导圆周长的计算方法。
难点:学生以合作实践,讨论交流的方式探究圆周率的含义。
关键:理解圆的周长与直径的关系。
教学具的准备:
多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。
教学过程:
(一)复习铺垫
出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)
同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
既然圆的周长是曲线那能不能用直尺直接测量呢?
2、测量圆的周长
(1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)
(2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
(4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?
(5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?
(6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。
3.在探究中理解公式(探究圆周长的规律)
(1)设疑激思
同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)
测量对象
圆的周长(厘米)
圆的直径(厘米)
周长÷直径=
交流实验报告单,得出结论。
师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?
生:直径与周长的比值是三点多。
师:其他小组有不同意见或补充吗?
生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。
师:凡是通过测量计算发现你的圆周长是直径的3倍多一些的同学请举手。
师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。
通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的`发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)
(2)认识圆周率
①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)
做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?
老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)
做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)
(三)巩固练习
1.计算下面各圆的周长。
d=2米 r=6分米 d=1.5厘米 r=1.5厘米
2.判断题
(1)π=3.14 ( )
(2)大圆的圆周率比小圆的圆周率大 ( )
(3)直接是2厘米的圆的周长是 ( )
3.14×2=6.28米
(4)半径3米的圆的周长是
3.14×3=9.42米
3.知识的拓展应用
计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)
(四)评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
《圆的周长》教学设计2
教学内容:圆的周长
教学重点:理解圆周率的意义。
教学难点:探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性
(二)猜想。(三)实验。
1.小组协作。
周长c (厘米)
直径d (厘米)
周长与直径的比值 (保留两位小数)
……
……
……
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
附:教学设想
一、选择与新知识最佳关系的生长点,巧制课件,导入新课。
“周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。
二、调动学生积极主动参与,给学生充分的探索空间。
整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。
三、在研究性学习中培养学生合作意识和数学交流能力。
小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。
附:教后感:
这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:
一、把课堂的主动权交给了学生,给学生充分的探索时空。
课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的.周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。
二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。
课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。
运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的探究能力有着极为重要的作用。
三、巧妙设计练习,照顾全体,培养学生的创造能力。
本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。
运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……
探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的同时只有让学生主动参与教学,才能让课堂充满生机。
附:评析意见:
对于刘老师上的《圆的周长》一节课,我们可以用九个字来概括,“观念新,意识强,效果好”。从教学设计中和教学过程中,我们深切地感受到刘老师的教学理念很先进,对“新课程标准中的数学学习和数学教学”有深刻的认识,也体现出较好的效果。
一、教学观念上,刘老师的“个性教育意识”强
刘老师的“个性教育意识”强,可以从刘老师的课堂设计、课堂结构上都可以体现出来。课堂上学生的学习过程都是以小组的形式来开展的,学生之间通过协作、交流来共同实现学习目标。这种组织形式就能保证了每一个学生都能得到许多的学习机会,在这样的学习环境中,人人都能得到发展,不同的人得到了不同的发展。
二、教学关系上,刘老师的“学生的主体意识”强
刘老师的“学生的主体意识”强,这一点不仅可以从教师的角色的转变中可以看出来,还可以从教学时间的分配上得到体现。首先教师的角色在课堂上有很大的变化。教师不再一个人主导课堂,她把教学主阵地让位给学生,从而使学生真正成为学习的主体。在课堂上,老师是不仅一个引导者,通过“龟兔赛跑”的故事,配合课件动画的演示,一下子就把学生带到探究问题的学习环境之中来。老师还是一个组织者,给学生分工,给学生目标和任务,其余工作都让学生自己去完成。学生都很好地利用这些时间和空间,动手操作,通过操作去探究和发现圆的周长和直径的关系。老师不只是注重结论的学习,更是让学生去经历学习活动的全过程,从而使学生体验到探究问题的乐趣。老师更是一位与学生平等的合作者,老师适时的点拨与启发“正方形的周长与边长有关,大胆地让学生猜一猜圆的周长与什么有关”。再如,老师艺术地把自己的测量结果与学生平等地呈现在一起,没有一点强加给学生的味道。另外,为了真正体现以学生为主体,而不流于形式。刘老师给学生提供充分的学习时间和空间,如探究和发现圆的周长与直径的关系,学生用了12分钟。这就保证学生有充分的时间参与学习活动,尽可能地让全体学生参与学习活动,使学生人人动脑、动口、动手,从而真正确立学生学习的主体地位,还学生学习的主人地位。
三、教学模式上,刘老师的“创新意识”强
在教学活动中,刘老师很注重学生创造力的培养。其中练习的设计很有新意,对培养学生的创造力起着很大的作用。小组之间互相提出问题,或独立解答,或讨论交流。从学生提出的问题我们可以感觉到学生的创造力很强。如有的提钟的时针转一圈的长度、单车的车轮的周长、呼啦圈的周长等,还有地球的周长,大树干的周长等。这些问题都是我们生活当中所常见的现象。学生就可以利用今天所掌握的知识去解决这些问题。学生的收获真的很大。从而让学生体会到什么是有价值的数学,生活当中的数学就是有价值的数学,有趣的数学,有利于学生发展的数学就是有价值的数学。
四、建议
课件整合方面,为了让学生从更深层次上接触科学的真理,培养科学的态度和科学精神。可以在学生操作得到圆的周长是直径的3倍多一些的关系以后,设计一个较精确的计算圆周率的课件,让学生对圆周率有一个更加清楚的认识。
《圆的周长》教学设计3
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第11——12页“圆的周长”。
【教学目标】
1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。
2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。
3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。
【教学重、难点】
1、探索发现圆的周长与直径的关系;
2、运用圆周长的知识解决一些简单的实际问题。
【教具、学具准备】
1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。
2、课件1:阿凡提与国王比赛A、B。
课件2:圆的周长与直径的商的关系。
课件3:祖冲之有关资料。
【教学设计】
一、创设情境
师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)
50米
师:同学们看,比赛开始了——紧张的比赛结束了。今天的比赛谁获胜了?
生:国王的小花驴获得了胜利
师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?
师:说说你是怎么想的?
生:他们的小毛驴跑的路程不是一样长。
师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?
生:量一量就知道了,
师:谁能说说正方形的周长和什么有关系,有怎样的关系?
生:正方形的周长和边长有关系,周长是边长的4倍,
师:也就是说只要测出正方形的一条边长就可以知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢?
师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。
得出:围成圆的曲线的长叫圆的周长。
二、自主合作,探究新知
(1)发现测量圆的周长的不同方法
师:下面请同学们把准备的圆拿出来,那“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)
师:把你的好方法在小组内交流一下。
(上台交流测量的方法)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,
生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。
生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,
生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以
2、就可以求出圆的周长。
师板:线绕、滚动、拉直化曲为直
(2)探究发现圆周率和圆的计算公式
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?
生:不行,圆太大了,测量不出来!
师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?
生:有些圆的周长没办法用绕线和滚动的方法测量出来
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,
师:有道理!那大家来猜一猜,周长和直径有怎样的关系?
生:周长是直径的2倍,生:他们一样长,生:我觉得这个圆的周长是直径的3倍,(4倍)(3。5倍)
师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?
生:动手量一量,算一算,
师:说的真好,这可是解决问题的好办法——动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的'方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。
3、可以用科学计算器帮忙算一算周长和直径的商。
师:好,现在我们来交流一下你们的实验结果。
生:实物展台交流。
师:大家仔细观察分析,看能发现什么?
圆的周长
(厘米)
圆的直径
(厘米)
周长与直径的商
(保留两位小数)
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。
生:所有圆的周长都是直径的3倍多一些,
师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)
生:圆不论大小,它的周长都是直径的三倍多一些。
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,
师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母∏表示。(板书:圆的周长÷直径=圆周率)
师:关于圆周率,大家都知道什么?你说,
生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,
师:老师也收集了一些有关的资料,大家想看吗?
看屏幕,这就是祖冲之,(课件介绍祖冲之)
师:我们通过圆的周长除以直径得到了“π”也就是圆周率(板书:C÷d=π)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?
生回答、师板书:C÷d=π→C=πd→C÷π=d
d=2r→C=2πr→C÷2π=r
三、拓展练习,实践应用
(1)计算跑道的周长。
师:(课件显示比赛跑道的有关数据正方形的边长(即圆的直径)50米)现在我们知道了这个圆形跑道的直径,请同学们利用公式快速算一算,这两个跑道的周长是多少?看看国王和阿凡提的比赛到底是不是公平?(学生开始计算,知道比赛不公平)
(2)判断。
(3)巩固练习:
A、1、判断并说明理由:π=3.14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确的是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
B、做P12下面T1:填表
T2:教师指名读题后,可以让学生说一说题中要求的问题实际上是求什么?注意算式与单位。
四、拓展练习课后延伸
师:阿凡提看到同学们帮他解决了这个大难题,非常高兴。可是,可恶的国王阴谋没有得逞,心里很不服气,他又冥思苦想出了个新花招,设计出了新型跑道,要和阿凡提再展开一场比赛
同学们想不想看看新跑道是什么样子
师:(课件出示新跑道)国王看到阿凡提毫不犹豫的答应了,心里真是乐开了花,心想,阿凡提呀,聪明人也有犯糊涂栽跟头的时候,我绕里面的小圈跑8字,不知要比你外面的大圈近多少路程,这个第一肯定是我的了。
师:请同学们课后去研究。
《圆的周长》教学设计4
教学资料:
圆的周长(小学数学九年制义务教材第十一册).
教学目的:
1.让学生明白什么是圆的周长.
2.理解圆周率的好处.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的好处.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指幻灯图片(长方形正方形三角形)问:这些是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是周长?
出示:平面上封闭图形一周的长度,就是它的周长。
想一想:什么叫元的周长
出示:围成圆的曲线的长叫做圆的周长。
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都能够用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?这天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和哪些部分有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的'秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑出示:
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁明白我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书63页,默读“其实”到“π≈3.14”.以及“你明白吗?”
七、看书后回答问题:
1.什么叫圆周率?
2.你明白是谁把圆周率的值精确到7位小数吗?
师:早在一千五百年前祖冲之就已经把圆周率精确到了7位小数了,他的发现比外国数学家早一千多年,一千多年是何等漫长的时间啊!为了纪念他,科学家把月球上的一座环形山脉命名为祖冲之山,这是我们中华民族的骄傲!
3.明白了圆周率,还需明白什么条件就能够计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式就应怎样表示?
此刻你们已经掌握了圆的周长的计算公式,下面你能根据所学的知识决定下面的说法是否正确?
决定:
1、π=3.14()
2、只要明白圆的直径或者半径,就能够明白圆的周长()
3、大圆的圆周率比小圆的圆周率大。()
求下面圆的周长:(见课件)
师:十分不错,大家基本掌握了圆的周长的计算方法,我们能够用这些知识来解决生活中的一些问题,下面看例题1:
八、出示例1:
一辆自行车车轮的半径是33厘米。车轮滚动一周,自行车前进多少米?小明家离学校一千米,骑车从家到学校,轮子C大约转了多少圈(π取3.14,得数保留两位小数。)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:c=0.33单位:米
c=2πr1000÷2=500(圈)
=2x3.14×0.33
答:骑车从家到学校,轮子大约转了500圈。
=207.24(cm)
≈2(米)
答:车轮滚动一周约前进2米.
九、课堂练习:
(一)应用题:
1.一张圆桌的直径是0.95米。这张圆桌的周长是多少米?
2.摩天轮的半径是5米,坐着它转动一周,大约转过多少米?
3.汽车轮胎的半径是0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米
(二)选取填空:
1、车轮滚动一周,前进的距离是求车轮的()
A.半径B.直径C.周长
2、圆的周长是直径的()倍。
πC.3
3、大圆的周长除以直径的商()小圆的周长除以直径的商。
A.大于B.小于C.等于
十.思考:已知圆的周长,如何求它的半径或直径呢?
圆的周长=直径×圆周率
直径=圆的周长÷圆周率
半径=圆的周长÷圆周率÷2
《圆的周长》教学设计5
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第一单元11至13页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆的周长的计算公式。
教学过程:
(一)创设情境,提出问题。
师:同学们,你们每天下课都会去学校中间的圆形花园玩。如果我绕着它的最大横截面走一圈,大约走多少米呢?这个问题是求什么呢?(板书课题:圆的周长)我们今天就来解决这个问题。
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
2、合作交流
在六人小组内讨论交流求圆周长的方法。
3、汇报展示
①用围的方法。指名演示。问:要注意什么?
②用滚的方法。指名演示。
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。无论是滚动法还是绳围法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么花园最大横截面的周长,还能用以上这些方法吗?
生:不能。
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
5、探讨圆的周长与直径的关系。
①小组合作
要求学生以六人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,三人同步计算计算圆的周长与直径的商,第六个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长
直径
周长与直径的商(保留两位小数)
1号圆片
2号圆片
3号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的'圆计算出的周长与直径的商可能不完全相同,但实际上,这个商是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
6、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式:
C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看花园吧!已知花园最大的横截面的直径是15米,如果朱老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
(三)巩固新知,解决问题
1.判断
(1)圆的周长是直径的π倍。
(2)大圆的圆周率大于小圆的圆周率。
(3)π=3.14
⑴、老师家里有一块圆形的桌布,直径为1米。为了美观,准备
在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
⑵、请同学们以小组为单位,画一个周长是12.56厘米的圆,先
讨论如何画,再操作.
四、课内小结,扎实掌握:
通过今天的学习,你有什么收获?
五、课外引申,拓展思维:
一个茶杯口的直径你有什么方法知道?
结束语:同学们,圆形是一种很漂亮的图案,圆满的人生是我们一生的追求,只有我们努力拼搏、发愤图强才能使我们的人生圆满、国家强盛。
《圆的周长》教学设计6
一、创设情境,导入新课
1、复习旧知(播放课件)
师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?
2、揭示课题。
师:现在,老师给你们变个魔术。(演示课件圆)
师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。
生:围成圆的这条线的长就叫做圆的周长,
师:这条线是什么形状的?
生:曲线
师:是曲线,那你能完整地说一遍吗?
生:围成圆的曲线的长叫圆的周长。(演示课件)
二、引导探索,探究新知
1、测量圆的周长的不同方法
师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:你们能量出圆的周长吗?(能)拿出你们的圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)
师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)
师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?
生:能!
(播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
2、探讨圆的周长与直径的关系
师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
师:你觉得是和直径有关系,说说理由好吗?
师:现在请同学们观察大屏幕,(课件)你发现了什么?
生:我发现圆的`直径越长,它的周长就越长。
师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动——测量)
师:好,现在我们来交流一下你们的实验结果。
(把学生的实验结果打在课件上)。
师:大家仔细观察分析,看能发现什么?
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。
师:这个同学真是好眼力。其他小组还有什么不同的发现吗?
生:所有圆的周长都是直径的3倍多一些。
师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?
生:圆不论大小,它的周长都是直径的三倍多一些.。
3、认识圆周率:
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)
师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。
师:圆的周长和它的直径的比值叫什么?用什么来表示?
师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)
师:看了这些资料后,你了解到了什么?
师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!
4、推导圆的周长的计算公式:
师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?
板书:C=πd
师:如果知道半径怎么求周长呢?
板书:C=2πr
师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?
生:圆的直径或半径。
5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。
三、初步运用,巩固新知
1、已知直径、半径求圆的周长
2、判断
3、已知周长求直径和半径
4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)
四、小结
1、组织学生说说收获:
这节课你们学到了什么?
师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。
《圆的周长》教学设计7
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
5、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、问题导入
同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。
二、探究新知
看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)
同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。
请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。
请同学们拿出你手边的圆,同桌互相指一指它的'周长吧。
三、合作探究
老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!
好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。
老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。
四、找出关联
同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。
我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?
五、合作解疑
请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。
好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)
好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。
请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。
六、知识渗透
说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。
七、公式推导
既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。
请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。
八、解决问题
1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。
2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)
这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。
3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?
《圆的周长》教学设计8
课题
圆的周长
例题
教学 目标
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。
2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。
3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。
手 记
我在设计圆的周长这节课时,对
圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。
重难点
教学重点:圆周长公式的推导。
教学难点:圆周率的意义。
教学过程
资源
目标
学与教
一、开门见山,直奔主题
二、渗透“转化”,激发兴趣
三、合作探究,发现规律
四、运用新知,解决问题。
五、知识回首,概括总结
师生谈话,生活中的周长概念,教具。
教具、学具,学生已有的生活经验
学具、计算器、
实验报告单
习题
实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。
让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想
测量的局限性引出寻找计算方法的必要性。
从猜想与观察中初步探寻周长与直径的关系。
通过操作,收集数据,计算比对后发现规律。
从周长与直径的比值引出圆周率的概念
从圆周率概念中演变出圆周长的计算公式
巩固运用、深化知识
学生对整节课所学知识进行梳理
(一)谈话引入,揭示课题。
上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)
1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。
2、提问:圆的周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?
(出示长方形、正方形、圆的图,让学生进行比较)
3、用一句话概括一下什么是圆的周长。
4、归纳:围成圆的曲线的长叫做圆的周长。
(二)探索测量圆的周长的方法
(1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)
生:拉直了再量一量。
师:为什么要拉直呢?(引出化曲为直的思想)
师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?
你有什么好的方法? (同桌讨论)
汇报:(学生演示)
a、可以把圆在直尺上滚动一周,测出周长。
b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。
教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?
生:是把弯曲的线段转化为直的线段来测量。
师:做校服量你的腰围是不是跟这个差不多呢?
师板书:绕线法、滚动法------化曲为直
(3)教师问:这样的方法有局限性吗?举几个例。
生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的.周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。
师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。
(1) 观察并猜想:圆的周长会和什么有关?有怎样的关系呢?
,圆的周长 教学设计
(三个直径不同的圆提示周长与直径有密切的联系。)
(2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的( )倍。
(三)圆周长的推导。
(1)探索圆周长与直径的关系。
下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?
让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?
圆
直径(厘米或毫米)
周长(厘米或毫米)
周长/直径(保留两位小数)
圆1
圆2
圆3
我们的发现
(2)反馈。
请学生上台来展示,并且说说发现。
小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。
(3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的印象。
3、教学圆周率。
师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。
师:什么是圆周率呢?也就是说周长是直径的多少倍?
说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)
上面的介绍,你有什么感受?
圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。
4、圆周长的计算公式。
师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)
师:根据圆周率你能求出圆的周长吗?
周长=直径×圆周率
(c=πd)
师:如果用半径求呢?
(c=2πr)
5、从最后的公式中可以看出,什么决定了圆的周长?
(四)解决问题
1、算一算。
求下面各圆的周长。
(1)d=4厘米 (2)r=1.5米
师:求圆的周长必须知道什么条件?
2、判断。
(1)、任何一个圆的周长总是直径的π倍。( )
(2)、圆周率是任何圆的周长和直径的比的比值。( )
(3)、大圆的圆周率比小圆的圆周率大。( )
(五)、谈学习收获:
师:哪位同学能谈谈这节课你的收获与感想?
板书 设计
圆的周长
圆的周长测量: 滚动法、绳测法---------------化曲为直
规律: 圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率
C=πd C=2πr
教学 准备
每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。
《圆的周长》教学设计9
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、 认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的.周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
《圆的周长》教学设计10
一、教学内容:圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
三、教学重点:
1.理解圆周率的意义.
2.推导出圆的周长的计算公式并能够正确计算.
四、教学难点:理解圆周率的意义.
五、教学过程:
一、 创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长.
3、师:今天我们就来研究圆的`周长。并出示课题
二、引导探究,学习新知
(一)推导圆的周长公式
1.学生讨论
(1)正方形的周长跟谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2.猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?
3.动手操作
(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。
师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
(2)整理并填写表格。单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(3)汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?
(三)认识圆周率、介绍祖冲之
1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
π≈3.14
2.介绍祖冲之
(四)归纳圆的周长公式
1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:c=πd
2.圆的周长还可以怎样求?由于d=2r 则:c=2πr
师板书:c=2πr
师问:圆的周长分别是直径与半径的几倍?
三、巩固应用,强化新知
(1)求下面各圆的周长.
1.d=2米 2.d=1.5厘米
(2)求下面各圆的周长.
1.r=6分米 2.r=1.5厘米
(二)判断题
1.π=3.14 ( )
2.计算圆的周长必须知道圆的直径. ( )
3.只要知道圆的半径或直径,就可以求圆的周长. ( )
(三)选择题
1.较大的圆的圆周率( )较小的圆的圆周率.
a 大于 b 小于 c 等于
2.半圆的周长( )圆周长.
a 大于 b 小于 c 等于
(四)课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
(五)实践操作
请同学们,画一个周长是12.56厘米的圆,
先以小组为单位讨论:画多大?如何画?再操作。
四、课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
《圆的周长》教学设计11
教学目标:
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点:推导圆的周长的计算公式,准确计算圆的周长。
教学难点:理解圆周率的意义。
教具准备:圆片、铁圈、绳子、直尺。
教学方法:观察、演示、小组合作交流
教学过程:
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
二、经历探究全程,验证猜想发现。
一圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的'圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
二圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)
三、感受数学文化,激发情感教育。
1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
2、介绍计算机计算圆周率的情况。
3、教学圆周率:π≈3.14。
四、归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
《圆的周长》教学设计12
【教学资料】
课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习
【教学目标】
1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题
2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。
3、培养学生创新思维潜力。
4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。
【教学重点】
探索圆的周长公式
【教学难点】
对圆周率π的理解
【学具准备】
每四个学生一组
1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个
2、直尺一把
3、细绳一条、两根长31.4厘米的细铁丝
4、实验表格
5、计算器
【教具准备】
实物投影议、电脑
【教学过程】
一、设疑导入、培养创新意识
1、电脑演示:有甲、乙两学生争论。
甲说:“我脑袋大。”
乙说:“我脑袋比你在大。”
师:“如果你是裁判员应如何评判,两人才能都服气?”
2、学生四人小组讨论
请学生说一说自己的方法
甲生:“看谁的脑袋大。”
师:“如果看不出来怎样办?”
乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”
师:“十分好!很有创意。”
丙生:“用绳绕头一周,测量绳的长度。”
师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。
二、动手尝试操作,探求新知
1、动手尝试操作
(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。
圆的周长c(厘米)
直径d(厘米)
周长÷直径(c÷d)
1
2
3
4
(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。
讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。
(3)用滚动的'方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。
2、探索规律
(1)师将填好的实验表格在实物投影议上出示。
学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。
(2)思想教育
师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。
教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。
师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”
生:“不能”。
师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”
(3)推导圆周长公式
师:“从公式看出,明白什么条件能够求出圆周长?”
生:“直径、半径。”
师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”
三、圆周长公式的应用(尝试练习)
1、出示例1
学生尝试练习,找学生板演,师生共同讲评。
2、完成例1下面的“做一做”。
3、出示例2
学生尝试练习,找学生板演,师生共同讲评。
4、完成例2下面的“做一做”题目。
5、第8页练习二的1、2、3题。
四、再次尝试操作、第二次创新
1、求出人脑袋的横切面的半径
(1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?
(2)四人一组互相合作,动手测量,计算时可利用计算器。
(3)将运算的结果对全班公布,并说明理由。
2周长相等的正方形、圆,谁的面积大
(1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?
师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”
(2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。
五、全课小结
1、这天我们学习了什么资料?
2、经过这节课的学习,你有什么收获?
3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。
六、作业
第9页练习二中的第9、10、11题。
板书设计
圆的周长
围成圆的曲线的长叫圆的周长
c=πdc=2πr
例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(生板演)3.14×0.95
=2.983
=2.98(米)
答:这张圆桌面的周长约是2.98米。
例2、一个圆形水池,周长是37.68米。它的直径是多少米?
(生板演)解:设水池的直径是X米。
3.14×X=37.68
X=12
或:37.68÷3.14=12(米)
答:水池的直径是12米。
《圆的周长》教学设计13
一、教学目标:
1. 让学生知道什么是圆的周长,《圆的周长》教学设计及反思。
2. 理解并掌握圆周率的意义和近似值。
3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。
4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。
5. 结合圆周率的学习,对学生进行爱国主义教育
二、教学重点:推导圆周长的计算公式,准确计算圆的周长。
三、教学难点:理解圆周率的意义。
四、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等
学生:2个大小不同的硬纸圆片、直尺、彩带、学具。
五、教学过程:
(一)、认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)
师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)
每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
(二).测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
【方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?
【方法二:把圆放在直尺上滚动一周,教学反思《《圆的周长》教学设计及反思》。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!(生齐笑)
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
(三)、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?
师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。
①测量计算。
让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。
②汇报、展示。
让学生汇报自己的测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。
③观察、发现。
让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)
(3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。
①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的.周长÷直径=圆周率)
②介绍圆周率的表示字母π及其读写法。
③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。
(四)总结圆周长的计算方法。
1、根据圆周长与直径的关系,
你能推导出圆的周长计算公式吗?指名回答,
引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。
师:现在,你能求出谁的路程长吗?为什么?
(五)、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
2.练习题
板书设计
圆的周长测量:滚动法 绳测法
规律:圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率C=πdC=2πr
教学反思:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。
《圆的周长》教学设计14
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级上册第三单元《圆》62-64页的内容。
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第三单元62至64页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆的周长的计算公式。
教学准备:一套多媒体课件、若干大小不同的圆片、一把直尺、一根绳子、一个计算器
教学过程:
(一)创设情境,提出问题。
师:同学们,20xx年是中国人扬眉吐气的一年,因为上海世博会的成功举办让我们有足够的理由为之骄傲和自豪。虽然世博会已经于10月31日完美落幕,但是,这场规模空前的盛会却创造了7308万人次参观的新纪录。其中,中国馆是众多展馆中的一朵奇葩,深受游客们的'喜爱,它的外观好像古代的一顶帽子,因此又被称为“东方之冠”。此外,城市地球馆也得到了中小学生的青睐。同学们,瞧,这是地球馆中的地球模型,它叫“蓝色星球”。如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?(板书课题:圆的周长)
【设计意图:上海世博会这个情境的创设是为了突破教材,以学生的兴趣作为出发点,使学生对新知识的学习充满了热情和渴望,激发学生的探索欲望,为后面的学习做好铺垫。】
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:既然求大圆的周长没有好办法,那么我们就把小圆片做为研究对象。同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
(2)测量圆的周长。
要求学生先独立思考有几种方法,再尝试用自己喜欢的办法去测量圆的周长。
【设计意图:培养学生养成独立思考的思维习惯,提高学生的动手操作能力。】
2、合作交流
在四人小组内交流方法。
【设计意图:小组合作旨在增强学生的合作意识,在此过程中,通过不断的交流、质疑,实现思想的碰撞与思维方式的互补,也使学生逐渐养成学会倾听的好习惯,并在聆听的过程中学会“取”和“舍”,即学会分析。】
3、汇报展示
学生汇报展示滚动法和绳绕法,教师点评:同学们,刚才有的同学用绳子绕圆片一周,这种方法属于绳绕法。还有的学生把圆片沿直尺滚动一周,这种方法我们称之为滚动法。无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)同学们展示的方法里面一定有你最欣赏的,那么就请大家用你们最欣赏最喜欢的方法同桌合作测量圆的周长,并把测得的数据直接写到圆上。
【设计意图:通过个别学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。】
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么“蓝色星球”最大横截面的周长,再比如赤道的长度,还能用以上这些方法吗?
生:不能。
【设计意图:再次把学生带回课堂伊始的情境中,在质疑中激发学生的学习兴趣,并促使他们产生探究一般方法的迫切愿望。】
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
(2)探讨圆的周长与直径的关系
①小组合作
要求学生以四人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,一人用计算器计算圆的周长与直径的比值,第四个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长直径周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
4号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的周长与直径的比值可能不完全相同,但实际上,这个比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
【设计意图:数学文化的渗透是为了激发学生的爱国情怀,从小培养学生的民族自豪感。】
5、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式: C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看“蓝色星球”吧!已知“蓝色星球”最大的横截面的直径是32米,如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
【设计意图:再次回到蓝色星球的情境中,运用新的知识解决问题,首尾呼应,使整节课完整而有序。】
(三)巩固新知,解决问题
1、世博会不仅汇聚了各具特色的展馆,还有一些纪念品也给游客留下了深刻的印象,比如这款金镶玉挂件,其中玉的半径是1.5厘米,如果在玉的一周镶一层金边,那么需要多长的金边?
2、菲利斯大转盘每节车厢旋转一周大约是251.2米,那么它的直径是多少米?
3、课件上所展示的是世博会众多花圃中的一个,如果给这个花圃加上栅栏,需要几米长的栅栏?
【设计意图:这三道习题是从基础练到拓展练的跨越,让学生在掌握了新内容的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】
结束语:同学们,虽然我们没有以设计者的身份参与到世博会的建设中,但是我们可以做自己人生的设计师,去建设属于你们的美丽新世界。
板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
课后反思:
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。
《圆的周长》教学设计15
一、教学目标
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3. 结合圆周率的学习,对学生进行爱国主义教育。
二、教学准备
一元硬币、圆形纸片等实物以及直尺,测量结果记录表
三、教学过程:
<一>、创设情境,引起猜想:
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2. 怎样才能知道这个正方形的周长?说说你是怎么想的?
3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)
化曲为直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的'路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
<二>、实际动手,发现规律:
(一)分组合作测算
1.明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系
2.生利用学具动手操作,师巡视指导、收集信息。
3.集体反馈数据(选取3~4组实验结果,黑板板书展示)
(二)发现规律,初步认识圆周率
1.看了几组同学的测算结果,你有什么发现?
2.虽然倍数不大一样,但周长大多是直径的几倍?
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3.这个倍数究竟是多少呢?我们来看一段资料。
(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5.解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 = 直径× 圆周率
C =πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢
板书:C =2πr
追问:那也就是说,圆的周长总是半径的多少倍
<三>、巩固练习,形成能力
1.判断并说明理由:π = 3.14 ( )
2.选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()
a.大圆的圆周率大于小圆的圆周率;
b.大圆的圆周率小于小圆的圆周率;
c.大圆的圆周率等于小圆的圆周率。
3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
<四>、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
【《圆的周长》教学设计】相关文章:
圆的周长教学设计03-12
《圆的周长》教学设计03-07
圆的周长教学设计11-08
圆的周长教学设计(必备)05-19
数学《圆的周长》教学设计09-18
圆的周长教学设计15篇04-01
圆的周长教学设计15篇(优秀)06-13
圆的周长教学设计(汇总15篇)09-05
【必备】圆的周长教学设计15篇09-11
(荐)圆的周长教学设计15篇05-29