《圆柱的表面积》教学设计
作为一位兢兢业业的人民教师,总归要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?下面是小编整理的《圆柱的表面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆柱的表面积》教学设计1
预设目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质。
教学重、难点:
1、理解和掌握圆柱体的侧面积和表面积的计算方法。
2、培养学生科学的学习态度。
教学过程:
一、检查复习,引入新课。
1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。
2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。
3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。
板书:圆柱的表面积
二、引导探究,学习新知。
1、侧面积的意义和计算方法。
⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。
⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)
小组讨论:有什么好办法求出圆柱的侧积吗?
⑶剪一剪自制圆柱,汇报交流结果。
⑷说一说:圆柱体的.侧面可转化为已学过的平面图形是什么?
它的侧面积正好等于底面周长乘高的乘积。
板书:圆柱的侧面积=底面周长×高
⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。
小结:计算圆柱体的侧面积的方法是什么?
⑹做一做:
课本76页例1及77页的第一题。
2、表面积的意义及计算方法
⑴自读课本:什么是圆柱的表面积?
板书:圆柱的表面积=侧面积+2个底面积
⑵练一练:(小黑板出示)
⑶小结:
圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。
三、巩固练习,灵活运用
1、自学课本,书77页例3。
⑴分小组讨论;
⑵学生反馈。
2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?
3、只列式不计算。
小黑板出示题目。
4、实践练习
⑴小组合作:测量并计算自制圆柱形实物的侧面积。
⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?
⑶测量:测量所需的数据。
⑷计算:根据量得的数据。列出相应的算式并算出结果。
四、课堂小结:
说一说你今天学会了什么知识?
《圆柱的表面积》教学设计2
教案背景:
冀教20xx课标版小学数学六年级下册第四单元
教学课题:
圆柱的侧面积。
教材分析:
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。
2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。
3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。
教学重点:圆柱侧面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。
学法指导:采取引导—放手—引导的.方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:圆柱体教具、多媒体课件。
学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:
一、复习导入,引入新知
1、复习圆柱体的特征
师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)
二、课堂小结
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。
三、课后作业
应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计
圆柱的侧面积 =底面周长 ×高→S侧=ch
长方形面积=长×宽
教学反思
这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:
一、数学教学要注重数学思想和数学方法的渗透。
在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。
二、重视学生的合作意识和实践能力的培养。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。
三、合理利用现代化教学手段辅助教学。
侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。
《圆柱的表面积》教学设计3
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的`面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学设计4
教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。
教学目标:
1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。
2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。
3、能正确运用公式计算圆柱的侧面积和表面积。
教学重点:
1、理解圆柱侧面积和表面积的意义。
2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。
教学难点:能正确计算圆柱的侧面积和表面积。
教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。
预习作业:
1、预习课本第21-22页的例2、例3。
2、掌握圆柱侧面积和体积的计算方法。
3、在作业本上完成第22页练一练第1题、第2题。
教学过程:
一、预习效果检测
1、圆柱的侧面积=
2、什么叫做圆柱的表面积?
3、圆柱的表面积=
4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。
二、合作探究
(一)、教学例1
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的'长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
如果知道的是底面半径,怎么算呢?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
根据学生回答板书:圆柱侧面积=底面周长×高
4、练习:完成“练一练”第1题。
(二)、教学例3
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。
算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
(三)、全课总结
这节课我们学习了什么?(板书:圆柱的表面积)
三、当堂达标检测
1、完成练习六第1题。
2、完成练习六第2题。
《圆柱的表面积》教学设计5
教学过程:
一、导入
1、圆的半径是5cm,圆的周长是多少?面积呢?
2、长方形的面积的计算公式是:(说一说,做一做)
3、长方体和正方体的表面积怎么计算的?(小组交流汇报)
4、那么圆柱的表面积该怎么计算?
二、新授
(一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)
2、圆柱的底面积你会计算吗?(圆形面积s=πr2)
3、圆柱的侧面积你会计算吗?
①圆柱的侧面是什么形状?(长方形)
②圆柱侧面(长方形)面积=长方形的面积=长×宽,
圆柱侧面(长方形)的长=?
圆柱侧面(长方形)的宽=?
③圆柱的侧面积=?
(组内观察交流讨论汇报说明理由)
4、小结:圆柱的表面=圆柱侧面积×圆柱的高
(二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)
①求需要多少面料,就是求帽子的……?
②厨师帽是由那几个面组成的?
(三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?
三、练习(练习二)
四、总结
通过本课学习你有哪些收获?
五、知识拓展
1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?
2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?
板书设计:
圆柱的表面积
圆柱的表面积=两个底面的面积+圆柱的侧面积
圆柱的侧面积=底面周长×圆柱的高
教学目标:
1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。
2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。
3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。
重点难点:
1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的`表面积。
2、灵活运用圆柱表面积公式,解决生活实际问题。
教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱
预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?
教学反思:
在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。
《圆柱的表面积》教学设计6
教材分析:
《圆柱的表面积》是人教版版小学数学六年级下册第二单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。
设计理念:
圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。动手实践,主动探索和合作学习是小学生学习数学的重要方式。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。本节课,我试图通过让学生动手,让学生“自由结合”进行探索,在为学生提供主动发展的时间和空间中实现以下
教学目标:
知识技能:1。通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。2。会正确计算圆柱的侧面积和表面积。
数学思考:运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
问题解决;使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。
情感态度:让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。
教学重点:动手操作展开圆柱的侧面积
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教具准备: 圆柱表面展开图
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
教学过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的'底面再加一个侧面)
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
二、自主探究,发现问题。
1、探究圆柱侧面的计算方法。
教师提问:将圆柱体的侧面展开,会是什么形状的呢?
这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积
即 长×宽 =底面周长×高
所以,
圆柱的侧面积=底面周长×高
S 侧 = C × h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
2、研究圆柱表面积
(1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
(2)、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积=圆柱的侧面积+底面积×2
(3)、动画:圆柱体表面展开过程
三、实际应用
四、回顾全课
本节课你收获了什么,有什么遗憾。
《圆柱的表面积》教学设计7
【教学内容】
P13-14页例3、例4,完成“做一做”及练习二的部分习题。
【教学目标】
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
【教学重点】
掌握圆柱侧面积和表面积的计算方法。
【教学难点】
运用所学的知识解决简单的实际问题。
【教学准备】
多媒体课件
【自学内容】
学习提示:
(1)长方体、正方体的表面积指的是什么?
(2)圆柱的.表面积指的是什么?
(3)圆柱的底面积你会计算吗?侧面积呢?
(4)你知道侧面的形状以及长、宽与圆柱的关系吗?
【教学预设】
一、自学反馈
1、求下面各圆柱的侧面积
(1)底面周长2.5分米,高0.6分米
(2)底面直径8厘米,高12厘米
2、求下面各圆柱的表面积
(1)底面积是40平方厘米,侧面积是25平方厘米
(2)底面半径是2分米,高是5分米
二、关键点拨
1、圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2、侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3、理解圆柱表面积的含义。
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4、教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
三、巩固练习
1、做第14页“做一做”。(求表面积包括哪些部分?)
2、练习七第6题。
四、分享收获畅谈感想
这节课,你有什么收获?
五、板书:圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想
反思与体会
《圆柱的表面积》教学设计8
一、教学目标:
1、知识目标:通过教师的引导和学生的探究使学生理解圆柱体的侧面积和表面积的计算方法,并会正确计算。
2、能力目标:①运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;②使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法。
3、情感目标:①让学生体验出自己探究发现的快乐;②感受到数学与日常生活联系广泛,激发起热爱数学的情感。
二、教学重点:
探究求圆柱体侧面积、表面积的计算方法,并能正确进行计算。
三、教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
四、教具准备:幻灯、 圆柱表面展开图
五、学具准备:长方形纸、剪刀、圆柱体纸盒。
六、教学过程:
(一) 复习导入,推出新知。
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,平形四边形,问相同的问题,再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
师;上节课,我们认识了圆柱,关于圆柱,你都知道它的 哪些知识?它有什么特点?
这节课,我们就再一起来学习有关圆柱的知识。(板书课题)
(二)创设情境,激发学生兴趣。
拿出圆柱体茶叶罐,摸一摸,说说你都摸到了哪些面。 师:想一想工人叔叔做这个茶叶罐是怎样用料的'?(学生会说出做两个圆形的底面再加一个侧面)
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
(三)引导探究,学习新知
1.圆柱的侧面积的计算方法。
(1)推导侧面积公式
师:圆柱侧面是一个曲面,如何计算它的面积呢?下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:展开图是什么形状?与圆柱体的底面有哪些关系? b:你能推导出圆柱体侧面积计算方法吗?
学生合作探索,然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个长正方形的边长等于圆柱体的底面周长,另一边长等于圆柱的高,正方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个平形四边形的底等于圆柱体的底面周长,高等于圆柱的高,平形四边形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
教师小结:强调转化的数学方法
老师板书公式。
2、圆柱表面积的意义
设疑:什么是圆柱的表面积呢?学生看圆柱体,说一说,议一议。
教师概况并板书:侧面积+两个底面积=表面积
3、圆柱的表面积。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
S表=S侧+2S圆
(2)利用公式计算。
(课件出示)
例1 计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。 ①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例2 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。
(1)水桶的侧面积
3.14×20×24=1507.2(平方厘米)
(2)水桶的底面积
3.14×(20÷2)2
=3.14×102
=3.14×100
=314(平方厘米)
(3)需要铁皮
1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
《圆柱的表面积》教学设计9
一、教学目标:
1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。
3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,数学与生活的联系。
二、教学重难点
教学重点:应用圆柱体侧面积和表面积的计算方法,解决实际问题
教学难点:探究并推导出圆柱侧面积、表面积的计算公式。教学准备:实物圆柱体、多媒体课件
三、新授课
(一)、温故引新巧妙入境
1、上节课,我们一起学习了一种新的立体图形,是什么?在日常生活中我们也见到过许许多多的圆柱形物体,想一想,它们有什么共同特征?
2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!
今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)
(二)、情境探究引出主题(1)、出示产品订货单 产品类型:薯片盒
产品规格:底面半径为3厘米,长10厘米。订购数量:10000个 交货日期:20xx年5月13日 订购单位:苗苗副食品加工厂 订货时间:20xx年4月27日
如果你是这家工厂的老板,你首先会考虑什么问题?他该购进多少材料呢?大家愿不愿意帮他解决这个问题?
(三)、动手操作结合课件理解重难点
1、认识表面积。
请同学们拿出课前准备的圆柱纸筒,现在假如它就是一个薯片盒,你们能算出做这样的一个薯片盒,需要多少材料吗?其实这就是求圆柱形薯片盒的?
以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)
那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。
2、探究圆柱侧面积的求法。
拿出你们带来的圆柱形物体,动手操作,去探究,去发现!在探究之前,请先看老师给你的探究提示。(大屏幕出示探究提示:a、你能把圆柱的侧面转化成我们已学过的平面图形吗?
b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)
先自己思考,然后再小组内讨论。
汇报各组的发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。
老师看大多数同学都把圆柱的侧面转化成长方形,那这个长方形与圆柱的哪部分有关系,有什么关系?谁来继续汇报?
真的.像同学们说的这样吗?请看大屏幕!
真的像许多同学说的那样,圆柱体的侧面沿高剪开后是一个长方形,长方形的宽相当于圆柱的高,那么,长方形的长呢?请同学们认真看大屏幕!说说你看到了什么?
看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗? 你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)
3、完成完整的表面积推导公式。
(四)、巩固应用拓展提高
1、基本练习
求圆柱体的侧面积,只列式,不计算 a、底面周长 10米,高0、5米 b、底面半径2分米,高5分米 c、底面直径20厘米,高5厘米 求圆柱体的表面积,只列式,不计算 a底面周长10米,高0、5米 b底面半径2分米,高5分米 c底面直径20厘米,高5厘米
2、变式练习
a现在,你能帮助加工店的老板解决问题了么? 思考:
生活中求一个圆柱形物体的用料情况时,是不是都得用:侧面积加两个底面积呢?举例说明。课件出示
要求下列圆柱形物体用料的面积,应计算哪些面的总面积? 油桶、笔筒、下水管、通风管
通过这道题,你想提醒提醒大家什么? b想想,在练习本上做下面的题
(1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
(2)、一个圆柱底面直径是5厘米,把它的侧面展开正好是一个正方形,它的侧面积是少平方厘米?
(3)、一个圆柱形水池,从池里面量,底面直径是4米,深1.5米。在池的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
3、发展练习
(1)、把一根长2.1米,底面半径是0.5分米的圆柱形钢材平均截成3段,表面积增加了多少?
(2)、做一个直径是30厘米的铁皮烟囱,高3.2米,接口处占2厘米,至少要用铁皮多少平方米?
课堂小结:通过本节课你有哪些收获? 布置作业:
《圆柱的表面积》教学设计10
一、设计理念
新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”
二、教学策略
1.创设生活情景,激励自主探索。
2.创建探究空间,主动发现新知。
3.自主总结规律,验证领悟新知。
4.解决生活问题,深化所学新知。
三、教材分析
《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
四、教学目的:
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
五、教学难点:
理解和掌握求圆柱表面积的计算方法。
六、教具准备:
圆柱表面积展开模型电脑课件
学具准备:
易拉罐、白纸壳、剪子
七、教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的'问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)
(二)创设探究空间,主动发现新知
1、认识圆柱的表面积
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的!
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X 2 + 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形的面积 = 长 × 宽
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律,验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)
(四)解决生活问题,深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
(评析:教师让学生合作学习,自主发现问题,交流解决。)
课件出示例四,读题明题意,学生试做,全班交流。
课件出示第16页第七题,学生试做,全班交流。
讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。
八、板书设计
S表面积=S侧+2S底
=2πrh+2πr
《圆柱的表面积》教学设计11
【教学目的】:
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
【教学重点】:
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
【教学难点】:
在计算机操作中培养学生的信息素养。
【教具准备】:
计算机辅助教学课件一套。
【教学过程】:
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)
二、自由选择,自学新知。
1、电脑显示: 自学新知a 自学新知b
说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)
自学新知a:
(1)
长方形
底面周长
高
长方形面积=
圆柱的侧面积=
(2)
底面
底面
侧面
圆柱表面
(动画)
圆柱的表面积=
(3)小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
自学新知b:
(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
长方形面积= ×
圆柱的侧面积= ×
(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,
所以:圆柱的表面积= +
(3) 小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
三、初步应用,尝试例题。
学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
电脑显示:
例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)
例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的`方法叫做进一法。
四、灵活选择,星级题库。
1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。
2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
题库:
1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?
2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
题库:
1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?
2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?
题库:
1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)
五、课外知识,开阔视野。
1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。
2、学生点击课外知识:链接北京科教信息网
1、师小结本节课所学内容。
2、学生点击布置作业,查看作业内容:
给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。
《圆柱的表面积》教学设计12
教材内容和在本册教材中的地位:
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学情分析:
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
教学目标:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的'能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点:
重点
圆柱表面积的计算。
难点
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
教学过程
一、激趣导入
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作
(一)圆柱表面积的意义。
设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(三)圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
2、计算圆柱体的侧面积。
(四)求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示
(一)汇报圆柱表面积的意义。
底面积×2+侧面积=表面积
(二)圆柱体侧面积的计算
1、小组合作探究。(剪圆柱形纸筒)
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸
1、求出下面各圆柱的侧面积.
(1)底面周长是1.6米,高是0.7米
(2)底面半径是3.2分米,高是5分米
2、计算下面各圆柱的表面积.(单位:厘米)
(1)底面直径是12米,高是16米
(2)底面半径是3.2分米,高是5分米
3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?
板书设计
圆柱的表面积
底面积=圆面积
底面积×2+侧面积=表面积
课后反思:
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
《圆柱的表面积》教学设计13
教学目标:
1、理解圆柱侧面积和圆柱表面积的含义。
2、掌握圆柱侧面积和表面积的计算方法。
3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。
教学重点:
掌握圆柱侧面积和表面积的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学准备:
多媒体课件
教学过程:
一、创设情景
1、复习圆柱的特征。
2、大屏幕出示问题,学生口头回答:
(1)一个圆形花池,直径是5米,周长是多少?面积是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽
二、探究新知
1、教学圆柱的侧面积。
(1)大屏幕出示课题:圆柱的表面积。
(2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。
(3)大屏幕出示圆柱的侧面展开图,思考:圆柱的.侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高
2、小结。
要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?
3、理解圆柱表面积的含义。
观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积
4、教学例4。
(1)大屏幕出示例4的题目。
思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么? (2)学生试着解答。
(3)全班交流:为什么只求了一个底面面积呢? (4)小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
5、巩固练习:完成第14页的“做一做”。
三、课堂小结
圆柱的表面积指的是哪几个面?如何求圆柱的表面积?
四、作业
完成练习二的5——7题。
五、思维训练
1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。
2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。
《圆柱的表面积》教学设计14
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是x、x和x。
2、底面是x形,它的面积=x。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个x形。它的长等于圆柱的x,宽等于圆柱的x。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=x,所以圆柱的侧面积=x。
(3)侧面积的练习
求下面各圆柱的`侧面积。
①底面周长是1.6m,高0.7m。
②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的x和x这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由x和x组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的x。需要注意的是厨师帽没有下底面,说明它只有x个底面。
列式计算:
①x帽子的侧面积=
②x帽顶的面积=
③x这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
《圆柱的表面积》教学设计15
教学内容:练习六第3~9题。
教学目标:
1、使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱
表面积计算的实际问题。
2、在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。
3、让学生进一步密切数学与生活中联系,能够初步学以致用。
教学重点:
能根据实际生活情况解决有关圆柱表面积计算的实际问题。
教学难点:
灵活运用所学知识解决实际问题的能力。
教学准备:
与练习六中的练习相关的图片。
教学过程:
一、复习引入
1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?
2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。
二、基本练习
1、出示练习六第3题,理解表格意思。
2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后交流方法和得数。
三、巩固练习
1、完成练习六第4题。
⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?
⑵各自练习后交流算法。
2、完成练习六第5题。
⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?
⑵各自练习后交流算法和结果。
3、讨论练习六第7题。
⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?
⑵看看,这个博士帽是怎么做成的,包括哪几个部分?
⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。
你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?
⑷各自计算,算后交流算法和结果。
⑸如果要做10顶呢?怎么算?
3、讨论练习六第8题。
⑴出示题目,让学生读题,理解题目意思。
⑵讨论:塑料花分布在这个花柱的哪几个面上?
要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?
算出上面和侧面的面积后,怎么算?为什么?
4、讨论解答练习六第9题。
⑴出示题目,读题,理解题目意思。
⑵尝试列式。
⑶交流算法:
这题先算什么?再算什么?最后算什么?
怎么算一根柱子的侧面积的?为什么不要算底面积?
四、小结
通过本节课的学习,你学会了什么?
学生交流
五、作业
完成《练习与测试》相关作业
板书设计
圆柱的`表面积
圆柱的体积
教学内容:教科书第25~26页的例4、“试一试”、“练一练”。
教学目标:
使学生经历观察、猜想、操作、验证、交流和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
掌握和运用圆柱体积计算公式
教学难点:
圆柱体积公式的推导过程
教学准备:多媒体
教学过程:
一、复习引入
1、呈现例4中长方体、正方体和圆柱的直观图。
2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱的体积怎么算?
3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、教学例4
1、观察比较
引导学生观察例4的三个立体,提问:
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2、实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。
3、推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
⑶引导用字母公式表示圆柱的体积公式:V=sh
三、教学“试一试”
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
四、巩固练习
1、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2、做“练一练”第2题。
说说为什么要从里面量?如果从外面量算出的是什么?
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
学生交流
六、作业
完成练习与测试相关作业
板书设计
圆柱的体积
【《圆柱的表面积》教学设计】相关文章:
圆柱的表面积教学设计02-18
《圆柱的表面积》教学反思09-11
“圆柱的表面积”教学反思04-14
圆柱的表面积教学反思04-14
《圆柱的表面积》说课稿07-20
《圆柱的表面积》说课稿11-14
《圆柱表面积》说课稿12-27
圆柱的体积教学设计05-13
《圆柱、圆锥的认识》课程教学设计通用03-26