高一数学教学计划合集15篇
时光在流逝,从不停歇,很快就要开展新的工作了,是时候静下心来好好写写计划了。好的计划是什么样的呢?以下是小编收集整理的高一数学教学计划,欢迎阅读,希望大家能够喜欢。
高一数学教学计划1
一、具体目标:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。
5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。
6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学……
二、本学期要到达的'教学目标
1、双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其资料反映出来的数学思想和方法。在基本技能方面能按照必须的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2、本事培养:
能运用数学概念、思想方法,辨明数学关系,构成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,构成数学的意思;从而经过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3、思想教育:
培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
三、进度授课计划及进度表
(略)
高一数学教学计划2
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的.概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
五、教学进度
周次 | 课、章、节 | 教 学 内 容 | 备 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 数列的概念与简单表示法,等差数列 | |
4 | 2.3 | 等差数列的前n项和 | |
5 | 2.4,2.5 | 等比数列及前n项和 | |
6 | 2.5 | 考试 | |
7 | 3.1,3.2 | 不等关系与不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(组)与简单线性规划问题,基本不等式 | |
9 | 考试,复习 | ||
10 | 期中考试 | ||
11 | 1.1,1.2 | 空间几何体的结构,三视图,直观图 | |
12 | 1.3 | 空间几何体的表面积与体积 | |
13 | 2.1,2.2 | 空间点、直线、平面的位置关系,直线、平面平行的判定及其性质 | |
14 | 2.3 | 直线、平面的判定及其性质 | |
15 | 3.1,3.2 | 直线的倾斜角与斜率,直线方程 | |
16 | 3.3 | 直线的交点坐标与距离公式 | |
17 | 4.1,4.2 | 圆的方程,直线、圆的位置关系 | |
18 | 4.3 | 空间直角坐标系 | |
19 | 复习 | ||
20 | 考试 |
高一数学教学计划3
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的'辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次 时 内 容 重 点、难 点
第1周
9.2~9.6 5 集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念
第2周
9.7~9.13 5 集合的基本运算
函数的概念、
函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20 5 单调性与最值、
奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27 5 指数与指数幂的运算、
指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4 5 (9月月考?、国庆放假)
第6周
10.5~10.11 5 对数与对数运算、
对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25 5 方程的根与函数零点,
二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22 5 三角函数的诱导公式
三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27 5 平面向量应用举例,
小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10 5 简单的三角恒等变换
期末复习
高一数学教学计划4
一、内容及其解析
1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1。目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2。解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。
三、教学问题诊断分析
1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的'坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2。2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2。3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2。4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:1。。
2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
练习:1。。
2。直线的斜率为2,在轴上的截距为,求直线的方程。
[设计意图]让学生明确截距的含义。
3。直线过点,它的斜率与直线的斜率相等,求直线的方程。
[设计意图]让学生进一步理解直线斜截式方程的结构特征。
4。已知直线过两点和,求直线的方程。
[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。
例2:已知直线,试讨论
(1)与平行的条件是什么?
(2)与重合的条件是什么?
(3)与垂直的条件是什么?
说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。
②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。
③若直线的斜率不存在,与之平行、垂直的条件分别是什么?
练习:
问题8:本节课你有哪些收获?
要点:
(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。
(2)两种形式的方程要在熟记的基础上灵活运用。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
高一数学教学计划5
本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标.
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。
2、培养学生的运算能力。
(1)通过三角函数求值与化简问题的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
二、教学要求
(一)三角函数
1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.
2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.
3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力
4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).
5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义.
6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。
(二)平面向量
1理解向量的概念,掌握向量的几何表示,了解共线问量的概念
2掌握向量的加法与减法
3掌握实数与向量的积,理解两个向量共线的充要条件
4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件
6掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式
7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力
8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力
9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.
三、教学重点
1、掌握同角三角函数的基本关系式
2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。
4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的'积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形
四、教学难点
1.函数y=Asin(ωx+φ)的简图
2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象
3.掌握正弦定理、余弦定理,并能运用它们解斜三角形
五、工作措施.
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。
课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
(1)加强数学数学竞赛的指导,提高学习兴趣。
(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。
(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。
3、搞好单元考试、阶段性考试的分析。
学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、进度安排.
第四章三角函数
§4.1角的概念的推广………………………………………………………………………………2课时
§4.2弧度制…………………………………………………………………………………………2课时
§4.3任意角的三角函数……………………………………………………………………………2课时
§4.4同角三角函数的关系…………………………………………………………………………2课时
§4.5诱导公式………………………………………………………………………………………2课时
§4.6两角和与差三角函数…………………………………………………………………………7课时
§4.7二倍角公式……………………………………………………………………………………3课时
§4.8三角函数的图象与性质………………………………………………………………………4课时
§4.9函数y=sin(ωx+φ)的图象…………………………………………………………………3课时
§4.10正切函数的图象与性质………………………………………………………………………3课时
§4.11给值求角………………………………………………………………………………………4课时
第五章平面向量…………………
§5.1向量……………………………………………………………………………………………1课时
§5.2向量的加法及减法……………………………………………………………………………2课时
§5.3实数与向量的积………………………………………………………………………………2课时
§5.4平面向量的坐标运算…………………………………………………………………………2课时
§5.5线段的定比分点………………………………………………………………………………2课时
§5.6平面向量的坐标运算…………………………………………………………………………2课时
§5.7平面向量的数量积及运算律…………………………………………………………………2课时
§5.8平面向量数量积的坐标表示…………………………………………………………………2课时
§5.9正弦定理、余弦定理…………………………………………………………………………2课时
§5.10解斜三角形应用举例…………………………………………………………………………2课时
§5.11实习作业………………………………………………………………………………………2课时
第六章不等式…………………
§6.1不等式的性质…………………………………………………………………………………3课时
§6.2均值定理………………………………………………………………………………………2课时
§6.3不等式的证明…………………………………………………………………………………6课时
§6.4不等式的解法…………………………………………………………………………………3课时
期末复习20课时
高一数学教学计划6
一、教学内容
本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。
二、教学目标与要求
认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。
1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。
2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。
3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的'应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。
4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。
5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。
高一数学教学计划7
一、教学目标
1.知识与技能目标
(1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.
(2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.
2.过程与方法目标
①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。
②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力
情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。
2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。
集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。
在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、
第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。
3、学情分析
学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学
生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。
二、方法与手段
本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。
3、教学重难点
重点:列举法、描述法。
难点:运用集合的三种常用表示方法正确表示一些简单的集合
4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。
5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。
6、教学思路:
7、教学过程
7.1创设情境,引入课题
【活动】多媒体展示:1、草原一群大象在缓步走来。
2、蓝蓝的天空中,一群鸟在飞翔
3、一群学生在一起玩。
引导学生举出一些类似的例子问题
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。
7.2步步探索,形成概念
【活动1】观察下列对象:
①1~20以内的所有质数;
②我国从1991—20xx年的13年内所发射的所有人造卫星
③金星汽车厂20xx年生产的所有汽车;
④20xx年1月1日之前与我国建立外交关系的所有国家;
⑤所有的正方形;
⑥到直线l的距离等于定长d的所有的点;
⑦方程x2+3x—2=0的所有实数根;
⑧新华中学20xx年9月入学的所有的高一学生。
师生共同概括8个例子的特征,得出结论,给出集合的'含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。
【设计意图】使学生自己明确集合的含义,培养学生的概括能力。
【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比
如:
1)A={1,3},3、5哪个是A的元素?
2)B={身材较高的人},能否表示成集合?
3)C={1,1,3}表示是否准确?
4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?
5)F={a,b,c}与G={c,b,a}这两个集合是否一样?
【分析】1)1,3是A的元素,5不是
2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,
所以B不能表示集合
3)C中有二个1,因此表达不准确
4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。
5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合
通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:
1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.
2)互异性:同一集合中不应重复出现同一元素.
3)无序性:集合中的元素没有顺序
4)集合相等:构成两个集合的元素完全一样
【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。
7.3集合与元素的关系
【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是
高一(5)班的同学,a、b与A分别有什么关系?
引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。
②如果b不是集合A的元素,就说b不属于集合A,记作b?A。
再让学生举一些例子说明这种关系。
【设计意图】使学生发挥想象,明确元素与集合的关系。
【活动】熟记数学中一些常用的数集及其记法
引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。
【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。
7.4集合的表示方法
【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?
7.4.1集合的列举法表示
【活动】尝试用列举法第4页例1中的集合:
1)小于10的所有自然数组成的集合;
2)方程x2?x的所有实数根组成的集合;
3)由1到20以内的所有素数组成的集合;
并思考列举法的特点。
引导学生阅读教科书,自主学习列举法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通过上述讲解请同学说说列举法的特点:
1)用花括号{}把元素括起来
2)集合的元素可以具体一一列出
【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。
7.4.2集合的描述法表示
【活动1】提出教科书中的思考题:
1)你能用自然语言描述集合{2,4,6,8}吗?
2)你能用列举法表示不等式x—7<3的解集吗?
学生讨论,师生总结:
1)从2开始到8的所有偶数组成的集合
2)这个集合中的元素不能一一列出,因此不可以用列举法表示
引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。
引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。
例如2)可以用描述法表示为:A={x?R|x<10}
【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。
【活动2】引导学生完成第5页例2
1) 方程x2?2?0的所有实数根组成的集合
2) 由大于10小于20的所有整数组成的集合
讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:
1)描述法:A={ x?R|x2?2?0}
列举法:
2)描述法:A={ x?Z|10
列举法:A={11,12,13,14,15,16,17,18,19}
【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。
7.5课堂小结,学习反思
【问题】1)集合与元素的含义?
2)集合的特点?
3)集合的不同表示方法
引导学生整理概括这一节课所学的知识
【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。
8、作业布置,巩固新知
课后作业:习题1.1A组第4题
课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。
②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。
9、板书设计
1.1.1集合的含义与表示
1、元素的含义:把研究对象统称为元素
2、集合的含义:一些元素组成的总体。
3、集合元素的三个特性:确定性,互异性,无序性,集合相等
4、元素与集合的关系:a?A,a?A
5、常用数集与记法
6、列举法
7、描述法
8、课堂小结
高一数学教学计划8
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。
数学目标要求
1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。
2、理解角的概念的推广和三角函数的定义,掌握基本的.三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性
3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。
4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。
5、掌握空间几何直线、平面之间的位置关系及其判定方法。
6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。
2、准确吧握新大纲。新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。根据材料个章节的重难点制定教学专题,积累教学经验。
6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
三、教学进度
高一上学期
高一下学期
周次内容
周次内容
1-4复习初中知识和集合1-3数列
5充要条件
4-6平面向量
6-7不等式7-9直线的方程
8-10
函数10期中考试
11
期中考试11-12圆的方程
12-14指数函数与对数函数13-15
立体几何
15-18三角函数16-18概率与统计初步
19-20期末、总复习、考试19-20
总复习与期末考试
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
高一数学教学计划9
本学期的措施及打算
1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。
2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。
3.根据学生学力状况进行分层次的培优补差。
三、教学进度安排
周次学习内容目标要求
1必修4 第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化
2军训
3第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。
4第5节:余弦函数,第6节正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质
5第7节: 的图像,第8节:同角的基本关系。图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。
6第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算
7第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的`坐标表示及运算。数量积的应用。
8第5节至第7节数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。
9第三章:三角恒等变换:第1节至第2节两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。
10期中考试期中复习,期中考试。
11第三章第3节:三角函数的简单应用试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。
12“五。一”长假
13必修3第一章:统计。第1节至第5节统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,
14第6节至第9节样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。
15第二章:算法初步:第1节至第3节基本思想,基本结构及设计,排序问题。
16第4节:几种基本语句条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。
17第三章:概率:第1节至第2节频率,概率,古典概率,概率计算公式。
18第2节至第3节建概率模型,互斥事件,习题课,章节复习,章节过关测试。
19期末复习
20期末复习,期末考试
高一数学教学计划10
一、教材依据
本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
二、教材分析
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式
、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清
直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
三、教学目标
知识与技能:
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的.斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生
通过对比理解截距与距离的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化
等观点,使学生能用联系的观点看问题。
四、教学重点
重点:直线的点斜式方程和斜截式方程。
五、教学难点
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
六、教学准备
1.教学方法的选择:启发、引导、讨论.
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性
学习活动。
2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题
间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
高一数学教学计划11
新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下
一,指导思想
加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。
二,教材分析
本册教材具有以下几个明显的特点:
1。为学生的数学学习构筑起点
教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。
2,向学生提供现实,有趣,富有挑战性的学习素材
教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。
3,为学生提供探索,交流的时间与空间
教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。
4,展现数学知识的形成与应用过程
教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。
5,满足不同学生的发展需求
教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。
三,教材的重点和难点
本册教材从内容上看,教学重点是三角形和四边形的性质定理
和判定定理的应用以及一元二次方程的应用。教学难点是对反
比例函数的理解及应用;用试验或模拟试验的方法估计一些复
杂的随机时间发生的概率。
四,教学措施:
1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。
2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。
3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。
4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。
五,时间安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函数
6月1日——6月10日频率与概率
6月11日——7月11日复习考试
>高中数学教学计划10
本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。
一、指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的.数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
高一数学教学计划12
一、教材资料分析
函数是高中数学的重要资料,函数的表示法是“函数及其表示”这一节的主要资料之一。学习函数的表示法,不仅仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不一样的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不一样表示方法:解析法、图象法、列表法。函数的不一样表示法能丰富对函数的认识,帮忙理解抽象的函数概念。异常是在信息技术环境下,能够使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。所以,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。
二、教学目标分析
根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、本事和情感三个方面制订教学目标。
1、明确函数的三种表示方法(图象法、列表法、解析法),经过具体的实例,了解简单的分段函数及其应用。
2、经过解决实际问题的过程,在实际情境中能根据不一样的需要选择恰当的方法表示函数,发展学生思维本事。
3、经过一些实际生活应用,让学生感受到学习函数表示的必要性;经过函数的解析式与图象的结合渗透数形结合思想。
三、教学问题诊断分析
(1)初中已经接触过函数的三种表示法:解析法、列表法和图象法、高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法。所以,教学中应当多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是能够写出解析式的。
(2)分段函数很多存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还能够经过动画模拟,让学生体验到,分段函数的问题应当分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。
四、本节课的教法特点以及预期效果分析
(一)、本节课的教法特点
根据教学资料,结合学生的具体情景,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生进取性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的本事。
(二)、本节课预期效果
1、经过具体的实例,让学生体会函数三种表示法的优、缺点。
创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:
(1)炮弹发射时,距离地面的高度随时间变化的情景;
(2)用图表的形式给出臭氧层空洞的面积与时间的关系;
(3)恩格尔系数的变化情景。
指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不一样的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自我去发现各自的优劣。这为第一道例题打下基础。
例1经过具体例子,让学生用三种不一样的'表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自我检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处“”有三种含义,它能够是解析表达式,能够是图象,也能够是对应值表。
由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不一样。经过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体、函数y=5x不一样于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点。由此认识到:“函数图象既能够是连续的曲线,也能够是直线、折线、离散的点,等等。”并明确:如何确定一个图形是否是函数图象方法
2、让学生会根据不一样的实例选择恰当的方法表示函数
例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,所以需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,能够让学生说说自我是如何分析的,选择了什么样的方法来表示这三个函数、经过比较各种不一样的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的本事。
学生经过观察、思考获得结论、比如总体水平(朱启南成绩好)、变化趋势(刘天佑的成绩在逐步提高)、与运动员的平均分的比较,等等。培养学生的观察本事、获取有用信息的本事。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情景,加以比较。
3、经过具体的实例,了解分段函数及其表示
生活中有很多能够用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。经过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情景的模拟。能够使函数在数与形两方面的结合得到更充分的表现,使学生经过函数的学习更好地体会数形结合的数学思想方法。
高一数学教学计划13
教学计划可以帮助教师理清教学思路,提高课堂效率。
●教学目标
(一)教学知识点
1.了解全集的意义.
2.理解补集的概念.
(二)能力训练要求
1.通过概念教学,提高学生逻辑思维能力.
2.通过教学,提高学生分析、解决问题能力.
(三)德育渗透目标 渗透相对的观点.
●教学重点 补集的概念.
●教学难点
补集的有关运算.
●教学方法 发现式教学法 通过引入实例,进而对实例的.分析,发现寻找其一般结果,归纳其普遍规律.
●教具准备
第一张:(记作1.2.2 A)
●教学过程 Ⅰ.复习回顾
1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?
Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.
请同学们由下面的例子回答问题: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分
由此借助上图总结规律如下: 投影片:(1.2.2 B)
Ⅳ.课时小结
1.能熟练求解一个给定集合的补集.
2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业
高一数学教学计划14
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的.一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn。有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生“跳一跳可以摸得着”。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。
例如,高一(下)P26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。
5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。
高一数学教学计划15
本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标、
(一)情意目标
(1)经过分析问题的方法的教学,培养学生的学习的兴趣。
(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)本事要求
1、培养学生记忆本事。
(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。
2、培养学生的运算本事。
(1)经过概率的训练,培养学生的运算本事。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。
(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算本事。
3、培养学生的思维本事。
(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。
(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的本事。
(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的.意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
二、教学重点
1、集合、子集、补集、交集、并集、一元二次不等式的解法
四种命题、充分条件和必要条件、
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式、等差数列前n项和公式。
等比数列及其通项公式、等比数列前n项和公式。
三、教学难点
1、四种命题、充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
四、工作措施
抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
【高一数学教学计划】相关文章:
高一数学教学计划06-11
对高一数学教学计划12-24
高一下数学教学计划02-01
高一数学教学计划15篇12-23
高一数学教学计划精选15篇12-23
高一数学教学计划(15篇)12-23
高一数学教学计划汇编15篇03-05
第二学期高一数学教学计划12-28
高一数学教学计划(集锦15篇)12-24