《圆锥的体积》教案
作为一名默默奉献的教育工作者,时常要开展教案准备工作,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?下面是小编为大家整理的《圆锥的体积》教案,仅供参考,大家一起来看看吧。
《圆锥的体积》教案1
一、教材分析
圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.
二、教学过程
(一)引出课题
1、师:同学们,看一看祝老师手中拿的是什么?
生:这是一个圆锥体.
2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?
生:可以,我们可以用排水法来求出它的体积.
师:如果是一个很大的一个圆锥体还用这种办法,会怎样?
生:能求出来但会很麻烦.
师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)
(二)实验探究推导公式
1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?
生:圆柱体
2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)
学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.
师:其他种和他们一样吗?
生:不一样.
师:谁还愿意汇报.
生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.
生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的`体积是圆锥体体积的3倍
2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?
生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。
3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。
(三)巩固练习
1、判断
(1)圆柱体的体积是圆锥体体积的3倍。 ( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )
(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )
2、解决问题
(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?
(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?
(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?
三、教学反思
这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。
1、难点分散。
针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。
2、导入的新颖。
情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。
3、教学手段和练习配套。
教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。
4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。
《圆锥的体积》教案2
教学内容
教科书第40~41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的'圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。
例2……
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:
《圆锥的体积》教案3
教学目标:
1、认识圆锥,理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过同学们自主探究,理解圆锥体积公式的推导过程,培养同学们初步的空间观念和动手操作能力。
3、采取小组合作、质疑问难、讨论交流的学习方式,培养同学们观察、猜测、分析、比较、综合的学习思考方法。
教学重点:
掌握圆锥体积的计算方法。
教学难点:
理解圆锥体积公式的推导过程。
教学流程 :
一、创设情境
让问题来源于生活 为了创设生活化的、富有探索性的问题情境,我先让学生看电脑显示,(在海边堆沙堆的画面),通过观察发现了什么,学生发现沙堆都是近似圆锥形的,接着让学生根据情境提出他们想知道的知识,有的的同学想知道圆锥的特点,还有的多学生都想知道沙堆的体积有多大,从而确定本节课的研究课题“圆锥的认识和体积”。这样一来教学问题自然地呈现在学生面前,学习现场从生活实际巧妙地引进课堂。这一环节的处理,使问题来源于孩子们,来源于生活,极大的调动了学生的探究热情。
二、自主探究
让学生体验创造的快乐 在这一环节中,我首先让学生联系生活,找出生活中哪些物体的形体是圆锥体的?通过让学生看生活中的圆锥体的图片,调动学生积极思维,加深学生对圆锥的认识,从而使学生理解数学来源于生活,生活中处处有数学。然后让学生根据生活经验制作圆锥体,在教学中为学生提供纸做的扇子、铅笔、转笔刀、直角三角形等材料,让学生在制作的的过程中,小组讨论交流的基础上,认识了圆锥,从而概括出圆锥的特征。同时用课件演示圆锥的各部分名称,并通过指一指实物圆锥的高,从而明确从圆锥的顶点到底面圆心的距离才是高。同时置疑,从实物中我们无法看出圆锥的高,那么我们怎么知道它的高呢?我将先让学生自己去研究测量方法,并根据汇报出示课件,然后再实际测量自己制作好的圆锥的高。在这一过程中,我充当了一名引导者,提示着研究方向,我与学生相互分享彼此的思考、见解和作品。学生在广阔的空间里,体验着成功的喜悦。
三、提供时空,让学生品位研究的乐趣
在这个环节中,我分四步进行:
第一步:联想猜测 让学生猜测、设想求圆锥体积的方法,学生独立思考后交流讨论,可能会有以下设想:
1、以长方形直角边为轴旋转一周得到圆柱体,以三角形直角边为轴旋转一周而得到圆锥体,由三角形面积是长方形面积的一半而联想到圆锥体积是圆柱体积的.一半。
2、学生也可能认为两个同样大小的圆锥把一个倒过来拼不成一个圆柱,圆锥体积不是圆柱体积的二分之一等等各种设想。这里老师给学生提供了联想和交流的空间,培养了他们的创新能力。
第二步:探索质疑 学生根据自己的设想,得到圆锥与圆柱体积之间存在某种关系:圆锥体积=底面积 ×高 ×倍数。 接着教师用电脑出示一个和圆锥不等底等高的圆柱,并提问:“你们所说的圆柱是这样的圆柱吗?”结合学生的回答再显示出与圆锥等底等高的圆柱。这样的设计,解决了部分有困难的学生心中的疑问。
第三步:分组验证 学生动手实验,小组合作探究圆锥体积的计算方法,学生可能会有多种方案:
1、从三角形面积公式的推导过程中受到启发,用几个同样大小的橡皮泥做的圆锥体,捏成一个和它等底等高的圆柱体,从而推导出圆锥体积的计算公式。
2、有的学生利用自然课中学过的知识:物体排出水的体积就是物体的体积,发现实体圆锥三次排出的水正好装满空圆柱。
3、还有的学生利用传统的装沙或装水的方法进行实验等等。 这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。
第四步:形成共识 通过学生演示、交流、讨论、教师演示(课件),得出圆锥体积的计算公式:圆锥体积=底面积 ×高 × 这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。
四、回归生活,让探究变得富有魅力
1、以练习的形式出示例1。 例1:一个圆锥体冰淇淋的底面直径是6厘米,高是15厘米。据统计,每毫升冰淇淋约可以产生5.02焦耳的热量。这个圆锥体冰淇淋大约可以产生多少焦耳热量?(得数保留整数)
2、口答
3、变式练习:求下面各圆锥的体积。
(1)底面半径是4厘米,高是21厘米。
(2)底面直径是6分米,高是6分米。 这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。
4、操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,或是利用学生从生活中找的一个圆锥形物体,想办法计算出它的体积。这道题就地取材,通过这道练习,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。培养学生解决实际问题的能力,了解数学与生活的紧密联系。 知识对学生来说,是自己对生活的现象的解读。书本知识是生活的一种提取、概括和应用,它给学生学习提供了一种视角,搭起一座平台。生活的边界就是教育的边界。我以一种开放的、立体的教育视野和课程理念,引领学生走进生活,创造性地把生活和知识关联起来,原本枯燥的探究也变得充满灵性。
《圆锥的体积》教案4
教学目标
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3.培养学生个人的自主学习能力和小组合作学习的能力。
教学重难点
掌握圆锥体体积公式的推导。
教学过程
(一)复习导入:
1.怎样计算圆柱的体积?
(板书:圆柱体的体积=底面积×高)
2.示例
(1)一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
(2)一个圆柱的底面直径是6分米,高10分米,它的体积是多少立方分米?
3.(出示圆锥体)
问:圆锥有什么特征?
师:怎样计算圆锥的体积呢?
(二)探索尝试,解释交流。
1.师:在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的?
学生回答,教师板书:
圆柱———(转化)———长方体
师:借鉴这种方法,为我们研究圆锥体体积提供了方便,每个组都准备了一个圆柱体和一个圆锥体。你们比比看,它们有什么相同的地方?
2.问:你发现到什么?
师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
师:既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(师把圆锥体套在透明的圆柱体里。)
师:是啊,圆锥体的'体积小,你估计一下这两个的体积有什么样关系?
师:用沙子、圆柱体、圆锥体做实验。
3.谁来汇报你们组是怎样做实验的?
师:你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(板书)
师:同学们得出这个结论非常重要,其他组也是这样的吗?
师:通过刚才同学们的动手我们发现等底等高的圆柱和圆锥有这样一个倍数关系。我们再来一起回一下实验过程。
大家一起把实验报告表填一下。
我们学过用字母表示数,如果用v表示体积,用s表示底面积,用h表示高。谁来把这个公式整理一下?(板书:)
4.出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
师:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(举例)
(三)课堂练习
1.求下面圆锥的体积。
(1)底面半径是2厘米,高3厘米。
(2)底面直径是6分米,高6分米。
2.用数学
(1)如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多少立方米?
(2)一个圆锥形零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
(3)一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
(四)课堂小结
通过本节课的学习,你有哪些收获?
《圆锥的体积》教案5
目 标:
1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。
2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。
3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。
重 点:掌握圆锥体积的方法
难 点:公式的推导
准 备:沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥
教 程:
一、准备
同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的呢?
二、诱发
课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的体积吗?它和圆柱的'体积有什么联系呢?这就是我们这节课要学习的内容。
三、探究释疑
1、初次猜想
⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?
⑵圆锥的体积是否能用“底面积×高”来计算呢
⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。
2、再次猜想
⑴通过模型演示,
⑵根据学生回答,从而得到如下结论:
圆锥的体积 = ×圆柱的体积(等底等高)
3、分组实验进行验证
⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。
⑵分组讨论,分组汇报
圆锥的体积 = ×圆柱的体积(等底等高)
用字母表示:V=1/3Sh
4、联系实际,进行运用
⑴出示例1,学生尝试练习,集体订正。
⑵教学例2、课件出示:
麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。
编好后,分组讨论计算
学生自己列式计算,集体订正
四、转化
1、基础题
⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的体积吗?为什么?
24立方米 9立方米 12立方米
⑵一个圆锥的底面直径是4厘米,高5厘米,它的体积是多少?
2、提高题
有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?
3、思考题
把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)
五、应用
1、 基础题:P44-T3、4
2、 提高题:P45-T10
3、 思考题:P45-T11、12
《圆锥的体积》教案6
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程:
一. 出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱=Sh
3.圆锥体的体积怎么求?
板书:V圆锥=1/3 Sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的'半径、直径或周长时,求它们的体积必须先求出什么?
二. 基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)
计算这些形体的体积:
(1)S底=1.5 平方米 h=5 米 求V圆柱
(2)S底=1.5 平方米 h=5 米 求V圆锥
(3)r=10分米 h=2 米 求V圆柱
(4)C=6.28米 h=6 米 求V圆锥
(1)、 (2)两题条件相同,所求不同;
板书:2. 圆锥体积一定要乘 1/3
(3)、 (4)两题都要先求出底面积;
板书:3. 单位名称要统一
三. 实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四. 提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2. S可以通过哪个条件求?( r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?
(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?
《圆锥的体积》教案7
教学目标
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1 下载2 下载3 下载4 下载5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的`底面积是10,高是9,体积是( )
(二)教学例1
1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
板书:
答:这个零件的体积是76立方厘米.
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积.
(2)已知圆锥的底面直径和高,求体积.
(3)已知圆锥的底面周长和高,求体积.
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正.
板书:(1)麦堆底面积:
=3.14×4
=12.56(平方米)
(2)麦堆的体积:
12.56×1.2
=15.072(立方米)
(3)小麦的重量:
735×15.072
=11077.92
≈11078(千克)
答:这堆小麦大约重11078千克.
3、教学如何测量麦堆的底面直径和高.
(1)启发学生根据自己的生活经验来讨论、谈想法.
(2)教师补充介绍.
a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.
b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
四、随堂练习
1、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
2、计算并填表
3、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.( )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )
五、布置作业
一堆煤成圆锥形,底面半径是1.5米,高是1.2米.这堆煤的体积有多少立方米?如果每立方米煤约重1.4吨,这堆煤约有多少吨?
六、板书设计
数学教案-圆锥的体积
《圆锥的体积》教案8
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:
一、创设情境,引发猜想
在一个闷热的.中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
1、出示学习提纲
(1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?
(2) 你们小组是怎样进行实验的?
(3) 你能根据实验结果说出圆锥体的体积公式吗?
(4) 要求圆锥体积需要知道哪两个条件?
2、小组合作学习
3、回报交流
结论:圆锥的体积是等底等高的圆柱体积的1/3。
公式:V=1/3Sh
4、问题解决
小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?
5、运用公式解决问题
教学例题1和例题2
三、巩固练习
1、圆锥的底面积是5,高是3,体积是()
2、圆锥的底面积是10,高是9,体积是()
3、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
4、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.( )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )
四、拓展延伸
一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?
五、谈谈收获
六、作业
《圆锥的体积》教案9
教学内容
教科书第39~40页例1,课堂活动及练习九第1题,第2题。
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
一、圆锥体积的计算公式的推导过程。
圆锥体积计算公式的理解。
小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。一、情景铺垫,引入课题
教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。
屏幕上出示问题:到底选哪种蛋糕划算呢?
教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?
教师抽学生回答问题。
可能会出现以下几种情形:
第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。
第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。
第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。
教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?
学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。板书课题:圆锥的体积
二、自主探究,感悟新知
1.提出猜想,大胆质疑
教师:谁来猜猜圆锥的体积怎么算?
学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的'体积,从而得出圆锥的体积……
对学生的各种猜想,教师给予肯定和表扬。
2.分组合作,动手实验
教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用投影仪展示实验报告单
圆锥的体积实验报告单
第()小组记录人:
名称底面半径最初水面高度最后水面高度水面上升高度体积
圆柱
圆锥
结论
反馈信息。各小组交流实验方法和结果。
教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?
方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=13×圆柱的体积。
方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。
方案三:我们组与前两小组的方法不一样。我们是用两个同样大的水槽装同样多的水,在水面的位置分别作好标记,然后把这两个实心的圆柱和圆锥分别放入两个水槽中,在升高后的水面分别作好标记,算出两个水槽水面上升的高度,发现放圆柱形水槽的水面上升的高度是放圆锥形水槽水面高度的三倍。因为两个水槽底面一样大也就是底面积相等,由圆柱的体积计算公式算出两个水槽中水的体积,发现圆锥的体积是圆柱的体积的三分之一。因此我们组得出的结论是:圆锥的体积是与它等底等高圆柱体积的三分之一。
教师:三个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。
教师把学生们的实验过程用小黑板演示一遍,让学生再经历一次圆锥体积的探究过程。
4.公式推导
教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?
教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。
板书:圆柱的体积=底面积×高
V=S×H
↓〖4↓〖6↓
圆锥的体积=13×底面积×高
V=13×S×H
教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?
抽学生回答,教师板书:V=13SH
教师引导学生理解公式,弄清公式中的S表示什么,H表示什么。
要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。
5.拓展
教师:是不是底和高不相等的圆锥体积也是圆柱体积的三分之一呢?我们来做个实验。
教师利用学生的实验器材进行演示。
用两个等底不等高的圆柱和圆锥装水;再用两个等高不等底的圆柱和圆锥装水,两次结果都没得到圆锥体积是圆柱体积的三分之一,进一步让学生体会等底等高的含义。
6.运用所学知识解决问题
教学例1。
一个铅锤高6CM,底面半径4CM。这个铅锤的体积是多少立方厘米?
学生读题,找出题中的条件和问题。
引导学生弄清铅锤的形状是圆锥形。
学生独立解答。抽学生上台展示解答情况并说出思考过程。
三、拓展应用,巩固新知
1.教科书第42页第1题
学生独立解答,集体订正。
2.填一填
(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。
(2)等底等高的圆柱的体积是圆锥体积的()倍。
抽生回答,熟悉圆锥的体积计算公式。
3.把下列表格补充完整
形状底面积S(M2)高H(M)体积V(M3)
圆锥159
圆柱160.6
学生在解答时,教师巡视指导。
4.教科书第42页练习九第2题
分组解答,抽生板算。教师带领学生集体订正。
5.应用公式解决实际问题
教师:现在我们再来帮助这两个同学解决他们的难题。
要求学生独立解答新课前买蛋糕的问题。
抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。
教师引导学生明白生活中的许多现象中都藏着数学问题,只要留心观察就能得出结论。这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?
《圆锥的体积》教案10
一、学习内容:
教师提供 小学数学六年级下册14页----17页。
二、学生提供:
等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。
三、学习目标:
1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
四、重点难点:
重点:圆锥的体积计算。
难点圆锥的体积公式推导。
关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。
五、学习准备:
等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。
看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?
长方形的长等于三角形的底,长方形的宽等于三角形的高。
你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?
三角形的'面积等于长方形面积的一半或长方形面积是三角形面积的2倍。
六、布置课前预习
点拨自学
1、圆柱和圆锥有哪些相同的地方?
2、圆柱和圆锥有哪些不同的地方?
3、圆锥的体积和圆柱的体积有什么关系呢?
请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。
七、交流解惑:
它们的底面积相等,高也相等
圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……
动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。
通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流
组际解疑
老师点拨
八、合作考试
1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)
2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底
面半径约3分米,高约2.7分米,求沙堆的体积。
(只列式不计算)
3、在打谷场上,有一个近似于圆锥的小麦堆,测
底面直径是4米,高是1.2米。每立方米小麦约
重735千克,这堆小麦大约有多少千克?
(只列式不计算)
4、如图,求这枝大笔的体积。
(单位:厘米)
(只列式不计算)
5、将一个底面半径是2分米,高是4分米的圆柱
形木块,削成一个最大的圆锥,那么削去的体积
是多少立方分米?(口算)
九、自我总结:
通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。
十、教学反思:
本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。
《圆锥的体积》教案11
教学内容
圆锥的体积计算公式。
教学目的
知道圆锥体积公式的推导过程,理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题,对学生进行辩证物主启蒙教育。
教学重点
圆锥体积的计算公式
教学难点
圆锥体积公式的'推导。
教具准备
沙、圆锥教具,圆柱教具若干个,其中要有等底等高圆柱,圆锥各两对。
教学过程
一、复习
1、口答圆柱体积计算公式。
2、计算下面各圆柱的体积。
(1)底面积是6.28平方分米,高是5分米。
(2)底面半径是2分米,高与半径相等。
(3)底面直径6厘米,高5厘米。
(4)底面周长6.28分米,高2分米。
小结学生练习情况。
二、新授
1、点明课题:锥体积的计算
2、全积公式推导
(1)要研究圆锥的体积,你想提出什么问题?
①圆锥的体积与什么有关?有怎样的关系?
②为什么有这样的关系呢?
(2)出示教具让学生观察圆锥体积与底面积,高有关系。
①要研究圆锥的体积需转化成已学过的物体积来计算。
②实验
(1)出示底等高的圆锥容器教具观察特征:等底、等高。
(2)老师示范用空圆锥装满沙往空圆柱里倒,让学生观察看看倒几倒满圆柱。
(3)得出结论:圆锥体积等于这个圆柱体积的1/3。
(4)老师再一次实验。
(5)学生动手实验:先做等底等高的实验,再做不等底不等高的实验,然后提问:圆锥体积都是圆柱体积的1/3吗?为什么?
3、学生讨论实验情况,汇报实验结果。
4、推导出公式
5、练习(口答)
(1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?
(2)一个圆锥体积是150立方厘米,与它等底等市的圆柱体积是多少立方厘米?
突出强调:“等底等高”这一前提下圆柱与圆锥的体积关系。
6、运用公式
(1)出示例1。一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生尝试练习,老师讲评。
(2)出示例2。在打谷场上,有一个近公似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?
学生读题思考片刻后问:要求小麦重量需先求出什么?要求体积需知道什么?然后学生尝试练习,个别板演,练习后评讲。
三、巩固练习
课本第43页的“做一做”第1、2题。练习后评讲。
四、小结:今天这节课,你学到了什么知识?要求圆锥的体积需要知识哪些条件?
五、作业
完成练习九的第3――5题。
《圆锥的体积》教案12
第3单元 圆柱与圆锥
2.圆锥
第2课时 圆锥的体积
教学目标
1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式。
2、能熟练运用公式正确地计算圆锥的体积,并能解决实际生活中有关圆锥体积计算的简单问题。
3、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
教学重难点
重点:理解圆锥体积公式的推导过程。
难点:熟练运用圆锥体积公式解决实际问题。
教学过程
一、复习引入
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新知探究
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的`。
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的三分之一。)
板书:
2、教学练习六第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、巩固练习:完成练习六第4题。
4、教学例3。
(1)出示题目:已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第34页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)
三、巩固练习
1、做练习六的第7题。
学生先独立判断这三句话是否正确,然后全班核对评讲。
2、做练习六的第8题。
(1)引导学生思考回答以下问题:
①这道题已知什么?求什么?
②求圆锥的体积必须知道什么?
③求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习六的第6题。
(1)指名学生先后回答下面问题:
①圆柱的侧面积等于多少?
②圆柱的表面积的含义是什么?怎样计算?
③圆柱体积的计算公式是什么?
④圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
四、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
教学反思
在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法, 不断加深学生对形体的认识。然后要学生用自己的学具自己动手做实验, 从实验的过程中得出结论: 等底等高的圆锥体体积 是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一 种水到渠成的感觉。然后, 利用公式解决生活中的实际问题,加深学生印象。新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发 学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥 的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
《圆锥的体积》教案13
教学内容:教材第13-14页圆锥的认识和体积计算,便如“练一练”,练习三第1-5题。
教学要求:
1、使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2、使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3、培养学生初步的空间观念和发展学生的思维能力。
教学过程:
一、复习引新
1、说出圆柱的体积计算公式。
2、我们已经学过了长主体、正方体及圆柱体。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是圆锥。今天这节课,就学习圆锥和圆锥的体积。
二、教学新课
1、认识圆锥。我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2、利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆以后距离是圆锥的高。
3、学生练习。口答练习三第1题。
4、教学圆锥高的.测量方法
5、让学生根据上述方法测量自制圆锥的高。
6、实验操作,推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有什么样的关系?
(3)实验操作,发现规律。圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的圆柱和圆锥都有这样的关系?只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。V=sh
(6)小结,要求圆锥体积必须知道哪些条件?公式中的底面积乘以高,求的是什么?为什么要乘以?
7、教学例1
(1)出示例1。
(2)审题后让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习
1、做“练一练”第2题。
强调:要乘以。
2、做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书,错的要求说明理由。
3、做练习三第3题。
让学生做在课本上。
第(3)、(4)题让学生说说是怎样想的。
四、课堂小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业
练习三第4、5题。
《圆锥的体积》教案14
教学目标:
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
教学难点:
理解圆锥体积公式的推导过程。
教具学具:
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
教学流程:
一、创设情境,提出问题
师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?
生:我选择底面的;
生:我选择高是的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
二、设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:
一是圆柱与圆锥等底不等高;
二是圆柱与圆锥等高不等底;
三是圆柱与圆锥不等底不等高;
四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的.体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
实验材料,任选沙、米、水中的一种。
实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:
谁来汇报一下,你们组是怎样做实验的?
通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)
联系生活,拓展运用:
本练习共有三个层次:
1、基本练习
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()
一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()
(2)计算下面圆锥的体积。(单位:厘米)
s=25、12 h=2、5
r=4,h=6
2、变形练习
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh
(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?
3、拓展练习
一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)
《圆锥的体积》教案15
教学目标:
1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。
2.培养学生观察、实践能力。
3.使学生在解决实际问题中感受数学与生活的密切联系。
教学重、难点:结合实际问题运用所学的知识
教学理念:
1.数学源于生活,高于生活。
2.学生动手实践,自主学习与合作交流相结合
教学设计:
一 回顾旧知:
1.圆锥的体积公式是什么? S、h各表示什么?
2.求圆锥的体积需要知道什么条件?
3.还知道哪些条件也能计算出圆锥的体积?怎样计算?
投影出示:
(1)S = 10,h = 6 V = ?
(2)r = 3,h = 10 V = ?
(3)V = 9.42,h = 3 S = ?
二 运用知识,解决实际问题
1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的`体积是多少吗? 怎么办呢?
2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米
(1)麦堆的底面积:__________________
(2)麦堆的体积:____________________
3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)
4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)
5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?
(1)(出示图)什么情况下削出的圆锥是的?为什么?
(2)削去的木料占原来木料的几分之几?
(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?
三 综合练习
1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。
2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米
3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?
【《圆锥的体积》教案】相关文章:
《圆锥的体积》说课稿05-23
圆锥的体积说课稿12-05
圆锥的体积说课稿07-04
《圆锥的体积》教学反思09-09
圆锥的体积教学设计03-11
圆锥的体积 教学设计05-12
圆锥的体积教学反思09-20
《圆锥的体积》教学设计07-03
《圆锥的体积》教学反思06-12
圆锥的体积教学设计11-04