一次函数教案
作为一名无私奉献的老师,编写教案是必不可少的,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编为大家整理的一次函数教案,欢迎大家借鉴与参考,希望对大家有所帮助。
一次函数教案1
一、创设情境
问题画出函数y=的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
二、探究归纳
问一元一次方程=0的解与函数y=的图象有什么关系?
答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.
问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?
答不等式>0的解集就是直线y=在x轴上方部分的'x的取值范围.
三、实践应用
例1画出函数y=-x-2的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
解过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0;
(2)当x<-2时,y>0.
例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如下图所示.
两条直线的交点坐标是(2,-1),由图可知:
(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;
(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.
四、交流反思
运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.
五、检测反馈
1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y大于零?
(3)x取什么值时,函数值y小于零?
3.画出函数y=-0.5x-1的图象,根据图象?
一次函数教案2
一、教材的地位和作用
本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。
(一)教学目标的确定
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。
1、知识目标
(1)能用两点法画出一次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。
2、能力目标
(1)通过操作、观察,培养学生动手和归纳的能力。
(2)结合具体情境向学生渗透数形结合的数学思想。
3、情感目标
(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。
(二)教学重点、难点
用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。
二、学情分析
1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。
2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
三、教学方法
我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。
四、教学设计
一、设疑,导入新课(2分钟)
师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?
生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。
生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。
生3:正比例函数也是一次函数。
师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?
这节课让我们一起来研究 一次函数的图象。(板书)
二、自主探究小组交流、归纳问题升华:
1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)
生:不知道。
师:那就让我们一起做一做,看一看:(出示幻灯片)
用描点法作出下列一次函数的图象。
(1) y= 0.5x (2) y= 0.5x+2
(3) y= 3x (4) y= 3x + 2
师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?
然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?
小组汇报:一次函数的图象是直线。
师:所有的一次函数图象都是直线吗?
生:是。
师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)
师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)
讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。
小组1:正比例函数图象经过原点。
小组2:正比例函数图象经过原点,一般的一次函数不经过原点。
师出示幻灯片3(使学生再一次加深印象)
师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法?
(一边思考,可以和同桌交流)(2分钟)
生1:用3个点。
生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!
生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。
师:我们都认为画一次函数图象,只过两个点画直线就行。
(幻灯片4:师,动画演示用两点法画一次函数的过程)
师:做一做,请你用两点法在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)
师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?
组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。
组2:我们组认为尽量都找整数。
组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)
组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。
师:同学们说的都很好。我觉得可以根据情况来取点。
2、师:我们现在已经用:两点法把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?
问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察学生回答)(3分钟)
①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。
生1:①y=0.5x与y=0.5x+2;两直线平行。
生2:②y=3x与y=3x+2;两直线平行。
生3:③y=0.5x与y=3x;两直线相交。
生4:④y=0.5x+2与y=3x+2;两直线相交。
师:其他同学有没有补充?
生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。
生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。
师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。
师:问(2),直线y=kx+b(k0)中常数k和b的值对于两个函数的图象的位置关系平行或相交,有没有影响?说说你的看法。(5分钟)
(学生自主探究小组交流、归纳师生共同总结)
组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。
生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?
组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。
组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。
师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!
师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)
生:重合。
师:老师考一考你,有没有信心?
生:有。
师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?
①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。
生1:①两直线平行。②两直线相交,交点是(0,-3)。
生2:①两直线平行。②两直线相交,交点是(0,-3)。
师:一次函数的图象都是直线,它们的形状都 ,只是位置 。
问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索同桌交流)(3分钟)
生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。
生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。
生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。
师:同学们规律找得都很好,我们这节课只研究平移。
问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟)
(学生动力操作尝试小组交流归纳小组汇报)
组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。
组2:直线y=3x向上平移2个单位能得到直线y=3x+2。
组3:直线y=3x+2向下平移2个单位能得到直线y=3x。
生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。
生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。
师:(同学们说的都很好,生5的发现更好,)
师:出示幻灯片7,然后按来通过动画演示平行移动的过程。
问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)
生1:k值不变,b值变化。
生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。
师:出示幻灯片7上的小规律。
做一做:(独立完成小组交流师生总结)(4分钟)
(1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。
(2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。
(3)将直线y=-x-5向上平移6个单位,得到直线( )。
(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。
组1汇报结果。
师:在这些问题中还有没有需要老师帮忙解决的?
生:没有。
三、你能谈谈你这节课的收获吗?(2分钟)
生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k0)
我还学会了用两点法画一次函数的图象。
生2:我觉得学习一次函数,既离不开数,也离不开图形。
生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。
生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。
四、测一测:(6分钟)
师:老师觉得你们学的不错,你们认为自己学的怎么样?
生:好
师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的.小组?
师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)
一、填空:1、一次函数y=kx+b(k0)的图象是( ),若该函数图象过原点,那么它是( )。
2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。
3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( )
4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。
5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。
二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )
A、交于同一个点 B、互相平行
C、有无数个不同的交点 D、交点的个数与k的具体取值有关
7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )
A、交于同一个点 B、互相平行的直线
C、有无数个不同的交点 D、交点个数的多少与b的具体取值有关
在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。
师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!)
师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。
师给予学生一定的时间,问:同学们对于这节课还有没有疑问?
生:没有。
四、作业:
在同一坐标系中画出下列函数的图象,并说出它们有什么关系?
(1)y=2x与y=2x+3
(2)y=-x+1与y=-3x+1
五、课外延伸:
直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。
六、教后反思:
在本节课的教学中,我坚持以学生为主体,采用自主探究小组合作、交流问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透数学形结合的数学思想。每一个问题的解决我都坚持做到:给学生自主探究问题的机会;在学生想展示自己的做法时,给学生充足的时间让他们去合作交流当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。
一次函数教案3
一、复习目标
知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。
能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。
情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。
教学重点与难点
重点:根据不同条件求一次函数的解析式。
难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。
教法与学法
教法分析:经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。由于是复习课,我采用边讲边练和问题教学的方式。
学法指导:在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的.复习方法。
二、教学过程
(一)、知识回顾:由于是复习课,所以开门见山做课前练习。
(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。因此,我用“六点”来对于本单元进行复习:
知识点1、一般形式:
1、选择题:
分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。
知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()
与Y轴交点是()
知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。而题目又往往出这种知识点,因此我把这个知识点编成顺口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是当k>0,b>0是,直线经过一二三象限,以此类推。(课件中以表格的形式向同学展示)同学们很容易记住并理解,举一些例子加以说明:
知识点4:求解析式:一般用特定系数法求函数的解析式,特定系数法的一般步骤是“设→代→解→答”。当然,在一些日常生活实际问题中,则可以根据题意直接列出解析式,这里应该说明:自变量的取值范围是函数解析式的一部分,但具体求法不作要求。
知识点5:求交点、求面积:指一次函数的图象与坐标轴的交点坐标以及两直线交点坐标的求法。直线y=kx+b与x轴的交点坐标,与y轴的交点坐标是(0,b),这里要再次向学生解释一下,交点坐标是怎样得出来的。两条直线的交点坐标的求法:是将两直线的解析式联成一个二元一次方程组,解这个方程组,将它的解写成一个有序实数对,就是两直线的交点坐标。
求面积6:平移:
(三)、堂堂清:
(四)、小结:本节课归纳的“六个点”不是互相孤立,而是互相依托,互相渗透的,如求直线与坐标轴围成的直角三角形的面积时,需要先求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式。由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。
(五)、布置作业:作业的布置应精心设计,体现分层教学和因材施教的原则。
1、必做题:配套的试卷1张。
2、选做题:课堂上布置的思考题。
一次函数教案4
教材分析
在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。
1 .注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.
2. 注重“数学结合”的教学
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
( 1 )让学生经历绘制函数图象的具体过程。
( 2 )切莫急于呈现画函数图象的简单画法。
( 3 )注意让学生体会研究具体函数图象规律的方法。
知识技能
目标
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会选择两个合适的点画出一次函数的图象;
3、掌握一次函数的性质.
过程与方法目标
1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度目标
1、通过画函数图象并借助图象研究函数的性质,体验数与形的`内在联系,感受函数图象的简洁美;
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点
一次函数的图象和性质。
教学难点
由一次函数的图像归纳得出一次函数的性质及对性质的理解。
一次函数教案5
教材分析
课程标准的描述
要求学生明确确定一次函数需要两个条件,确定正比例函数需要一个条件;会用待定系数法求一次函数的解析式,并使学生初步形成数形结合的思想;
教学内容分析
通过例4,介绍了用待定系数法求一次函数的解析式的基本步骤,并明确待定系数法的用途和目的,进而形成数形结合的思想;
前面学生一直学习的是已知函数的解析式,然后研究函数的图象和性质,是从数到形的过程;从这一节课开始,学生反过来学习从形到数,并且在后面的学习中也经常用到数形结合的思想,所以这节课是整个学生的一种逆向思维的转折点,起着承上启下的作用,具有重要意义。
学情分析
教学对象分析
1.本班学生对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图象,通过图象判断k和b的符号,会用待定系数法计算简单的正比例函数的解析式,但求解二元一次方程组还有一定的困难,而利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题不会很大。另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点或者没有说求函数解析式,这样的题学生掌握的`不够好。
2.学生已经学过解二元一次方程组,并会求正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。在此基础上,可以先让学生知道什么是待定系数法,怎样去用,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从数到形和从形到数的相互渗透。
3.如何根据所给的信息找到条件,确定一次函数的解析式,是学生学习的障碍,对于这个问题,主要利用四种题型(图象、列表、交点、实际应用)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。
教学目标
1、理解待定系数法,并会用待定系数法求一次函数的解析式;
2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;
3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;
4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力.
教学重点和难点
项 目
内 容
解 决 措 施
教学重点
利用待定系数法求一次函数的解析式
强调用待定系数法求一次函数解析式的步骤
教学难点
培养数形结合分析问题和解决问题的能力
指导学生从题目中找出两个条件
教学策略
教学策略的简要阐述
通过讲授不同题型,从浅入深掌握待定系数法求一次函数解析式的四个步骤。
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。
教学过程
课堂教学过程设计
教学环节
教师活动
学生活动
设计意图、依据
复习
出了一组关于一次函数解析式、图象及性质的填空题。
一、温故知新:
1、在函数y=2x中,函数y随自变量x的增大__________。
2、已知一次函数y=2x+4的图像经过点(m,8),则m=________。
3、一次函数y=-2x+1的图象经过第 象限,y随着x的增大而 ; y=2x -1图象经过第 象限,y随着x的增大而
。
4、若一次函数y=x+b的图象过点A(1,-1),则b=________
5、已知一次函数y=kx+5过点P(-1,2),则k=_____
大部分同学很快就完成,一小组同学轮流说答案并简单讲解。
复习一次函数的图象和性质,并初步体会从数到形的思想
创设情景,提出问题
让学生画出y=2x和y=x+3的图象,并思考“你在作这两个函数图象时,分别描了几个点?你能否通过取直线上的这两个点来求这条直线的解析式呢”
接着让学生完成:
已知:一次函数y=kx+b当x=1时y的值为2,当x=2时y的值为5,求k和b.
解:把x=1,y=2;x=2,y=5分别代入函数y=kx+b得:
解得:
学生通过画图象确定“两点确定一条直线”,即求一次函数解析式需要两个条件,求出k和b即可。
激发学生学习的兴趣,培养学生分析问题的能力。通过填空题的形式,初步体会列二元一次方程组求k和b的值。
讲授例题
以教材例4为主,讲授待定系数法的四个步骤,如何利用待定系数法求函数的解析式,如何找到两个点,并总结归纳什么是待定系数法。
例:已知一次函数的图象经过点(3,5)与(-4,-9). 求这个一次函数的解析式.
待定系数法:______________________________________________________________
你能归纳出待定系数法求函数解析式的基本步骤吗?
(1)_______________(2)_______________(3)_______________(4)____________
学生能根据给的两个点的坐标代到一次函数的解析式,并且解出二元一次方程组,求出k和b,知道求一次函数的解析式,只需要求出k和b,也就是需要找两个条件,实质上就是找两个点。
通过例题使学生形成完整的利用待定系数法求函数解析式的步骤。
提出问题,形成思路
出示四种题型:图象、表格、两点的坐标、实际应用,分别用待定系数法求一次函数的解析式。
图象的学生基本能求出,会找两个点;对于利用表格信息确定函数解析式,学生不知道是求函数的解析式;实际应用问题,学生分析问题能力较差,但基本上能找到两个条件。
加深对待定系数法的理解,加强分析问题并解决问题的能力。
课堂小结
1、待定系数法求一次函数的解析式的步骤;
2、数形结合的思想:从数到形和从形到数的思路。
学生基本能说出这节课学习的主要内容,对于数形结合的思想,学生基本能理解。
复习巩固所学知识,体会数形结合的思想。
小试身手
设计了一组从浅入深的题目,巩固本节课的内容。
由于时间关系,只完成了3题。
深化巩固所学知识,并能有所拓展提高。
板书设计
用待定系数法求一次函数的解析式
例、解:设这个一次函数的解析式为:y=kx+b
∵y=kx+b的图象过点(3,5)与(-4,-9).
3k+b=5
-4k+b=-9
解方程组得
K=2
b=-1
这个一次函数的解析式为:y=2x-1
用待定系数法求函数解析式的步骤:
1、设
2、代
3、解
4、写
教学
特色
教学特色
及时肯定学生和营造鼓励学生的氛围,激发学生学习的兴趣,积极参与课堂,自觉学习和思考。
利用多媒体辅助教学,增强直观性,提高学习效率和质量,增大教学容量,激发学生兴趣,调动积极性。
问题式教学, 互动式教学引导学生学会探究、学会合作、学会学习、学会体验。
设置了学案,让学生对教学内容更容易掌握。
教学
反思
在导入新课时,通过一组练习,让学生清楚一次函数解析式或图象关键是k和b的确定。通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好。反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。在课堂总结环节应逐步培养学生学会总结的意识和习惯。
但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。
一次函数教案6
知识技能目标
1、理解一次函数和正比例函数的概念;
2、根据实际问题列出简单的一次函数的表达式.
过程性目标
1、经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;
2、探求一次函数解析式的求法,发展学生的数学应用能力.
教学过程
一、创设情境
问题1小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3以上问题1和问题2表示的这两个函数有什么共同点?
二、探究归纳
上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数(linear function).一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.
特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(direct proportional function).正比例函数也是一次函数,它是一次函数的特例.
三、实践应用
例1下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.
20解(1)a,不是一次函数.
h(2)l=2b+16,l是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
例2已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析根据一次函数和正比例函数的定义,易求得k的值.
1解若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=2,若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2。
例3已知y与x-3成正比例,当x=4时,y=3。
(1)写出y与x之间的`函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解(1)因为y与x-3成正比例,所以y=k(x-3)。又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9。
(2)y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
例4若直线y=—kx+b与直线y=—x平行,且与y轴交点的纵坐标为—2;求直线的表达式。分析直线y=—kx+b与直线y=—x平行,可求出k的值,与y轴交点的纵坐标为—2,可求出b的值。解因为直线y=—kx+b与直线y=—x平行,所以k=—1,又因为直线与y轴交点的纵坐标为—2,所以b=—2,因此所求的直线的表达式为y=—x—2.3例5求函数yx3与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成2的三角形的面积。3分析求直线yx3与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标2和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线3yx3与x轴、y轴围成的三角形是直角三角形,两条直角边就是直线23yx3与x轴、y轴的交点与原点的距离。
解当y=0时,x=2,所以直线与x轴的交点坐标是a(2,0);当x=0时,y=—3,所以直线与y轴的交点坐标是b(0,—3)。11soaboaob233.22
例6画出第一节课中问题(1)中小明距北京的路程s(千米)与在高速公路上行驶的时间t(时)之间函数s=570—95t的图象。分析这是一题与实际生活相关的函数应用题,函数关系式s=570—95t中,自变量t是小明在高速公路上行驶的时间,所以0≤t≤6,画出的图象是直线的一部分。再者,本题中t和s取值悬殊很大,故横轴和纵轴所选取的单位长不一致。讨论:
1、上述函数是否是一次函数?这个函数的图象是什么?
2、在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明。例7旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以
1看成他们携带的行李质量x(千克)的一次函数为yx5.画出这个函数的6图象,并求旅客最多可以免费携带多少千克的行李?
分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x轴的交点横坐标的值.即当y=0时,x=30.由此可知这个函数的自变量的取值范围是x≥30.解函数y1x5(x≥30)图象为:当y=0时,x=30。所以旅客最多可以免费携带30千克的行李。例8今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x—0.9.(1)画出函数的图象;
(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准。分析画函数图象时,应就自变量0≤x≤5和x>5分别画出图象,当0≤x≤5时,是正比例函数,当x>5是一次函数,所以这个函数的图象是一条折线。解(1)函数的图象是:
(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元。
四、交流反思
b1。一次函数y=kx+b,当x=0时,y=b;当y=0时,x。所以直线y=kx+kbb与y轴的交点坐标是(0,b),与x轴的交点坐标是,0;
k2。在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线。
一次函数教案7
教学目标
1、使学生理解待定系数法;=】、】
2、能用待定系数法求一次函数,用一次函数表达式解决有关现实问题、
3、感受待定系数法是求函数解析式的基本方法,体会用“数”和“形”结合的方法求函数式;
4、结合图象寻求一次函数解析式的求法,感受求函数解析式和解方程组间的转化.教学过程
一、创设问题情境
一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?
问题1已知一个一次函数当自变量x=—2时,函数值y=—1,当x=3时,y=—3.能否写出这个一次函数的解析式呢?
由已知条件x=—2时,y=—1,得—1=—2k+b.由已知条件x=3时,y=—3,得—3=3k+b.两个条件都要满足,即解关于x的二元一次方程
问题2已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的'长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?
二、合作探究
讨论1.本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题.
2.这个问题是与实际问题有关的函数,自变量往往有一定的范围.问题3若一次函数y=mx—(m—2)过点(0,3),求m的值.分析考虑到直线y=mx—(m—2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程.
解当x=0时,y=3.即:3=—(m—2).解得m=—1.
这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。
三、实践应用
例1已知一次函数y=kx+b的图象经过点(—1,1)和点(1,—5),求当x=5时,函数y的值.
分析1.图象经过点(—1,1)和点(1,—5),即已知当x=—1时,y=1;x=1时,y=—5.代入函数解析式中,求出k与b.
2.虽然题意并没有要求写出函数的关系式,但因为要求x=5时,函数y的值,仍需从求函数解析式着手.这个函数解析式为y=—3x—2.当x=5时,y=—3×5—2=—17.
例2已知一次函数的图象如下图,写出它的关系式.
分析从“形”看,图象经过x轴上横坐标为2的点,y轴上纵坐标是—3的点.从“数”看,坐标(2,0),(0,—3)满足解析式.解设所求的一次函数的解析式为y=kx+b(k≠0).直线经过点(2,0),(0,—3),把这两点坐标代入解析式,得例3求直线y=2x和y=x+3的交点坐标.
分析两个函数图象的交点处,自变量和对应的函数值同时满足两个函数关系式.而两个函数关系式就是方程组中的两个方程.所以交点坐标就是方程组的解.所以直线y=2x和y=x+3的交点坐标为(3,6).
四、检测反馈1。根据下列条件写出相应的函数关系式.(1)直线y=kx+5经过点(—2,—1);
(2)一次函数中,当x=1时,y=3;当x=—1时,y=7.2。写出两个一次函数,使它们的图象都经过点(—2,3).
3、如图是某长途汽车站旅客携带行李费用示意图.试说明收费方法,并写出行李费y(元)与行李重量x(千克)之间的函数关系.
4、一次函数y=kx+b(k≠0)的图象经过点(3,3)和(1,—1).求它的函数关系式,并画出图象.
5、陈华暑假去某地旅游,导游要大家上山时多带一件衣服,并介绍当地山区海拔每增加100米,气温下降0.6℃.陈华在山脚下看了一下随带的温度计,气温为34℃,乘缆车到山顶发现温度为32.2℃.求山高.课堂小结
本节课,我们讨论了一次函数解析式的求法
1、求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;
2、用一次函数解析式解决实际问题时,要注意自变量的取值范围.
3、求两个一次函数图象的交点坐标即以两解析式为方程的方程组的解.教学反思
一次函数解析式的求法一般是采用待定系法,对于学生而言,如何理解这种方法是解决这一问题的关键为了解决这个问题,我举了这样一个例子:已知直线y=kx+b经过点(3,5)和点(5,6)怎样求这个函数关系式?学生们很容易想到通过列方程组解决问题,为什么要选择列方程组解决这个问题,目的是什么?学生习惯于如何做题,却从不想为什么采用这种方法,这种方法的出发点是什么?经过思考,有的学生终于答出了这个问题:确定k,b的值一次函数解析式就确定下来了。这正是待定系数法的精髓,学生们只有能理解到这一点才能领会到待定系数法的精髓。
一次函数教案8
教学目标
(一)教学知识点
1.掌握一次函数解析式的特点及意义.
2.知道一次函数与正比例函数关系.
3.理解一次函数图象特征与解析式的联系规律.
4.会用简单方法画一次函数图象.
(二)能力训练要求
1.通过类比的方法学习一次函数,体会数学研究方法多样性.
2.进一步提高分析概括、总结归纳能力.
3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.
教学重点
1.一次函数解析式特点.
2.一次函数图象特征与解析式联系规律.
3.一次函数图象的画法.
教学难点
1.一次函数与正比例函数关系.
2.一次函数图象特征与解析式的联系规律.
教学方法
合作─探究,总结─归纳.
教学过程
ⅰ.提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.
分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15—6x(x≥0)
当然,这个函数也可表示为:y=—6x+15(x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=—6x+15的值,即y=—6×0.5+15=12(℃).
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.
ⅱ.导入新课
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c的值约是t的7倍与35的差.
2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.
3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).
4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.
这些问题的函数解析式分别为:
1.c=7t—35.
2.g=h—105.
3.y=0.01x+22.
4.y=—5x+50.
它们的形式与y=—6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.
如果我们用b来表示这个常数的话.这些函数形式就可以写成:y=kx+b(k≠0)
一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数(linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.
练习:
1.下列函数中哪些是一次函数,哪些又是正比例函数?
8(1)y=—8x.(2)y=x.
(3)y=5x2+6.(3)y=—0.5x—1.
2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.
(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?
(2)求第2.5秒时小球的速度.
3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?
解答:
1.(1)(4)是一次函数;
(1)又是正比例函数.
2.(1)v=2t,它是一次函数.
(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米/秒.
3.函数解析式:y=50—5x自变量取值范围:0≤x≤10 y是x的一次函数.
[活动一]活动内容设计:
画出函数y=—6x与y=—6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.
活动设计意图:
通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.
教师活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.
学生活动:
引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的`意义,体会数形结合在实际中的表现.
比较上面两个函数的图象的相同点与不同点。
结果:这两个函数的图象形状都是______,并且倾斜程度_______。函数y=—6x的图象经过原点,函数y=—6x+5的图象与y轴交于点_______,即它可以看作由直线y=—6x向_平移__个单位长度而得到。比较两个函数解析式,试解释这是为什么。猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?
结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线
y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。
画出函数y=2x—1与y=—0.5x+1的图象。过(0,—1)点与(1,1)点画出直线y=2x—1.
过(0,1)点与(1,0.5)点画出直线y=—0.5x+1.[活动二]活动内容设计:
画出函数y=x+
1、y=—x+
1、y=2x+
1、y=—2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?
活动设计意图:
通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.
目的:
引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k值的联系.
结论:
图象:
规律:
当k>0时,直线y=kx+b由左至右上升;当k<0时,直线y=kx+b由左至右下降.
性质:
当k>0时,y随x增大而增大.
当k<0时,y随x增大而减小.
ⅲ.随堂练习
1.直线y=2x—3与x轴交点坐标为_______,与y轴交点坐标为_________,图象经过第________象限,y随x增大而_________.
2.分别说出满足下列条件的一次函数的图象过哪几个象限?
(1)k>0 b>0(2)k>0 b<0(3)k<0 b="">0(4)k<0 b<0解答:
以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这
种函数观点认识问题的方法,对于继续学习数学很重要.
三、巩固练习
1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.
2.利用图象解出x:
6x—4<3x+2.
[解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.
方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.
(2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的函数值都小于2.所以自变量x的取值范围是x<—2.
方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的取值范围是x<—2.
2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.
方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.
四.随堂练习
1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.
2.利用图象解不等式5x—1>2x+5.
五.课时小结
本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.
六.课后作业
习题14.3─3、4、7题.
七.活动与探究
a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济
教学反思:
本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一
个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。
一次函数教案14
教学目标
(一)教学知识点
利用一次函数知识解决相关实际问题.
(二)能力训练目标
体会解决问题方法多样性,发展创新实践能力。
教学重点
灵活运用知识解决相关问题.
教学难点
灵活运用有关知识解决相关问题.
教学方法
实践─应用─创新.
教具准备
多媒体演示.
教学过程
1.提出问题,创设情境
我们前面学习了有关一次函数的一些知识及如何确定解析式,如何利用一次函数知识解决相关实践问题呢?
这将是我们这节课要解决的主要问题。ⅱ.导入新课
下面我们来学习一次函数的应用.
例1小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.
分析:本题y随x变化的规律分成两段:前5分钟与后10分钟.写y随x变化函数关系式时要分成两部分.画图象时也要分成两段来画,且要注意各自变量的取值范围.
20x200解:y=300(0x5)(5x15)
我们把这种函数叫做分段函数.在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
例2a城有肥料200吨,b城有肥料300吨,现要把这些肥料全部运往c、d两乡.从a城往c、d两乡运肥料费用分别为每吨20元和25元;从b城往c、d两乡运肥料费用分别为每吨15元和24元.现c乡需要肥料240吨,d乡需要肥料260吨.怎样调运总运费最少?
通过这一活动让学生逐步学会应用有关知识寻求出解决实际问题的.方法,提高灵活运用能力.教师活动:
引导学生讨论分析思考.从影响总运费的变量有哪些入手,进而寻找变量个数及变量间关系,探究出总运费与变量间的函数关系,从而利用函数知识解决问题.
学生活动:
在教师指导下,经历思考、讨论、分析,找出影响总运费的变量,并认清它们之间的关系,确定函数关系,最终解决实际问题.
活动过程及结论:
通过分析思考,可以发现:a──c,a──d,b──c,b──d运肥料共涉及4个变量.它们都是影响总运费的变量.然而它们之间又有一定的必然联系,只要确定其中一个量,其余三个量也就随之确定.这样我们就可以设其中一个变量为x,把其他变量用含x的代数式表示出来:
若设a──cx吨,则:
由于a城有肥料200吨:a─d,200─x吨.
由于c乡需要240吨:b─c,240─x吨.
由于d乡需要260吨:b─d,260─200+x吨.
那么,各运输费用为:
a──c20xa──d25(200—x)
b──c15(240—x)b──d24(60+x)
若总运输费用为y的话,y与x关系为:y=20x+25(200—x)+15(240—x)+24(60+x).
化简得:
y=40x+10040(0≤x≤200).
由解析式或图象都可看出,当x=0时,y值最小,为10040.
因此,从a城运往c乡0吨,运往d乡200吨;从b城运往c乡240吨,运往d乡60吨.此时总运费最少,为10040元.
若a城有肥料300吨,b城200吨,其他条件不变,又该怎样调运呢?
解题方法与思路不变,只是过程有所不同:
a──cx吨
a──d300—x吨
b──c240—x吨
b──dx—40吨
反映总运费y与x的函数关系式为:
y=20x+25(300—x)+15(240—x)+24(x—40).
化简:y=4x+10140(40≤x≤300).
由解析式可知:当x=40时y值最小为:y=4×40+10140=10300因此从a城运往c乡40吨,运往d乡260吨;从b城运往c乡200吨,运往d乡0吨.此时总运费最小值为10300吨.
如何确定自变量x的取值范围是40≤x≤300的呢?
由于b城运往d乡代数式为x—40吨,实际运费中不可能是负数,而且a城中只有300吨肥料,也不可能超过300吨,所以x取值应在40吨到300吨之间.
总结:解决含有多个变量的问题时,可以分析这些变量间的关系,选取其中某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.这样就可以利用函数知识来解决了.
在解决实际问题过程中,要注意根据实际情况确定自变量取值范围.就像刚才那个变形题一样,如果自变量取值范围弄错了,很容易出现失误,得到错误的结论.
ⅲ练习
从a、b两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,a、b两水库各可调出水14万吨.从a地到甲地50千米,到乙地30千米;从b地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.
解答:设总调运量为y万吨·千米,a水库调往甲地水x万吨,则调往乙地(14—x)万吨,b水库调往甲地水(15—x)万吨,调往乙地水(x—1)万吨.
由调运量与各距离的关系,可知反映y与x之间的函数为:y=50x+30(14—x)+60(15—x)+45(x—1).
化简得:y=5x+1275(1≤x≤14).
由解析式可知:当x=1时,y值最小,为y=5×1+1275=1280.
因此从a水库调往甲地1万吨水,调往乙地13万吨水;从b水库调往甲地14万吨水,调往乙地0万吨水.此时调运量最小,调运量为1280万吨·千米.
ⅳ.小结
本节课我们学习并掌握了分段函数在实际问题中的应用,特别是学习了解决多个变量的函数问题,为我们以后解决实际问题开辟了一条坦途,使我们进一步认识到学习函数的重要性和必要性.
ⅴ.课后作业
习题11.2─7、9、11、12题.
一次函数教案15
教学目标
(一)教学知识点
1.学会用待定系数法确定一次函数解析式.
2.具体感知数形结合思想在一次函数中的应用
(二)能力训练目标
1.经历待定系数法应用过程,提高研究数学问题的技能.
2.体验数形结合,逐步学习利用这一思想分析解决问题.教学重点
待定系数法确定一次函数解析式.教学难点
灵活运用有关知识解决相关问题.
教学方法
归纳─总结教具准备
多媒体演示.
教学过程
1.提出问题,创设情境
我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?
这将是我们这节课要解决的主要问题,大家可有兴趣?
ⅱ.导入新课
有这样一个问题,大家来分析思考,寻求解决的办法.[活动]活动设计内容:
已知一次函数图象过点(3,5)与(—4,—9),求这个一次函数的解析式.
联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?
活动设计意图:
通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.
教师活动:
引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.
学生活动:
在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.
活动过程及结论:
分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.
设这个一次函数解析式为y=kx+b.
3kb5因为y=k+b的图象过点(3,5)与(—4,—9),所以4kb9 k2解之,得b1,故这个一次函数解析式为y=2x—1。
结论:函数解析式选取满足条件的两定点画出一次函数的图象y=kx+b解出(x1,y1)与(x1,y2)选取直线l
像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.
练习:
1.已知一次函数y=kx+2,当x=5时y的值为4,求k值.
2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.
3.生物学家研究表明,某种蛇的长度y(cm)是其尾长x(cm)的一次函数,当蛇的'尾长为6cm时,蛇的长为45.5cm;当蛇的尾长为14cm时,蛇的长为105.5cm。当一条蛇的尾长为10 cm时,这条蛇的长度是多少?
4.教科书第35页第6题。解答:
1.当x=5时y值为4.即4=5k+2,∴k=509kb
2.由题意可知:20xxkb 4k3b12解之得,作业:教科书第35页第5,7题。
备选题:
1、已知一次函数y=3x—b的图象经过点p(1,1),则该函数图象必经过点( )
a、(—1,1)b。(2,2)c。(—2,2)d。(2,—2)
2、若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求b的值.
3、点m(—2,k)在直线y=2x+1上,求点m到x轴的距离d为多少?
【一次函数教案】相关文章:
《一次函数》教学反思06-07
确定一次函数表达式的教学反思05-27
八年级《一次函数》教学设计03-20
《背影》教案03-08
《绝句》教案03-13
《孔孟》教案03-09
《长城》教案02-26
《狼》教案02-26
《蝴蝶》教案03-02