可能性教案

时间:2024-06-18 10:01:48 教案 我要投稿

可能性教案

  作为一名专为他人授业解惑的人民教师,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么大家知道正规的教案是怎么写的吗?以下是小编整理的可能性教案,欢迎阅读,希望大家能够喜欢。

可能性教案

可能性教案1

  复习内容:教科书第12册112页-115页整理与反思和练习与实践。

  教学目标:

  1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

  2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

  3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。

  教学过程

  一、复习有关统计的知识和方法。

  1、引导学生回忆收集和整理数据的方法。

  ①广泛地有针对性地收集各种原始数据。

  ②对数据进行加工,去粗取精,去伪存真。

  ③数据处理、分类和计算。

  ④ 按一定的顺序或方式表示出来。

  提问:收集数据有哪些方法?(小组讨论,集体交流)

  小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。

  2、提问:记录数据有哪些方法?举例说明。

  (如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)

  3、出示填空题。

  ( )统计图能清楚地表示出数量的增减变化情况

  ( )统计图可以清楚地表示出各部分同总数的关系。

  ( )统计图能清楚地直接比较出数量的多少。

  小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的特点,我们要根据数据特点进行选择。

  4、指导学生完成第1题

  ⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)

  ⑵思考:这两组数据分别制成什么统计图比较合适?为什么?

  ⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。

  ⑷提出一些问题让学生看图回答。

  二、回忆不同统计图的特点。

  (一)出示教材113页的统计图指导观察统计图

  1、指名回答,这是什么统计图?

  2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?

  (①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)

  3、独立完成统计表

  根据图中的信息将统计表填写完整。

  4、小组交流讨论教材中提出的4个问题

  引导学生可以根据统计图或统计表进行回答出示条形统计图

  (二)指导完成第3题

  1、出示第3题统计表,说说从表中可以了解哪些信息?

  2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)

  3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)

  4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。

  5、在讨论中完成对两个问题的解答。

  (三)指导完成第4题

  1、讨论扇形统计图的有关特征?

  2、独立完成书上3个问题的解答,然后集体校对

  课前思考:

  考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。

  在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。

  教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。

  第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的学生总人数,然后再计算。

  讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。

  课后反思:

  复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。

  练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。

  通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。

  课前思考:

  本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的`统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。

  课后反思:

  指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。

  课后反思:

  复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。

  练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。

  通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。

可能性教案2

  教材分析:

  本单元是在学生学习了建大的统计图、统计表及初步认识不确定现象的基础上进行教学的,是进一步学习统计与可能性以及对事件发生可能性做出预测的基础。由于该单元的学习内容比较抽象,学生理解起来有一定困难,因此,要引导学生根据已有的生活经验和知识进行学习,借助操作实验等实践性活动逐步体会可能性是有大小的。

  教学目标:

  1.结合具体实例,知道事件发生的可能性是有大小的。

  2.能够借助实验,判断事件发生的可能性的大小;能列出简单实验所有可能发生的结果;初步体会统计的工具性。

  教学重点:

  能够借助实验,判断事件发生的可能性的大小。

  教学难点:

  初步体会统计的.工具性。

  教学过程:

  (一)学生展示交流自己的名片

  (二)摸名片(属相)

  1.提出活动要求。

  把小组的名片和在一起,每人摸10次,每次摸一

  张,每次摸完后再放回去,打乱顺序再摸。猜猜看,摸到什么属相的可能性大?

  2.小组同学先猜测,各选择代表一种属相。

  3.实验验证。组长将组员每次摸的情况记录并统计。

  4.根据统计情况,你发现了什么?(小组讨论)

  小结:从这个游戏中,我们体会到了事件只要存在,就有发生的可能性,而且可能性是有大小的,存在数量越大,发生的可能性越大,存在数量越小,发生的可能性越小。

  (三)摸名片(男生女生)

  1.说明活动要求:活动要求同前。

  2.活动前,数数各小组内男、女生的人数(一样多)估计摸到谁的可能性大?

  3.小组开展活动。

  4.全班交流统计结果。

  5.根据结果,你发现了什么?

  检测反馈

  自主练习第1题

  1.女孩从箱内摸糖(10个草莓,20个巧克力)

  2.男孩从箱内摸糖(10个草莓,10个巧克力)

  他们分别摸出哪种糖的可能性大一些?为什么?

  课外拓展

  完成自主练习的2、3、4题。

可能性教案3

  [教学内容]

  教科书数学六年级上册94—96页例1,例2及"试一试","练一练"和练习十八的第1,2题。

  [教材简析]

  例1教学用几分之一表示事件发生的可能性。学生在四年级(上册)已经初步认识游戏规则的公平性。教材以此为切入点,呈现"乒乓球比赛时争夺发球权"的现实场景,组织学生讨论"用猜左右的方法决定由谁先发球公平吗为什么"在此基础上,使学生初步认识到可以用分数表示简单事件发生的可能性,并体会用分数表示可能性的基本思考方法。"试一试"利用学生熟悉的摸球活动,帮助学生进一步明确用几分之一表示可能性大小的思考方法。

  例2教学用几分之几表示事件发生的可能性。第(1)题让学生继续学习用几分之一表示摸到每张牌的可能性。第(2)题教学用几分之几表示事件发生的可能性。最后,通过练习加深用分数表示可能性的大小。

  [教学目标]

  1,理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

  2,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

  3,认识数学与生活的联系,使学生明确生活中任何幸运和偶然的`背后都是有科学规律支配的

  [教学过程]

  一,复习旧知,唤起经验。

  1,根据摸到红球的可能性,按从大到小的顺序排列,并说明理由。

  2,小结:以前我们用"可能,一定,不可能"来描述可能性的大小,那可能性的大小能不能用更简单的数学语言来表示呢今天继续研究可能性。(板书课题)

  (设计意图:关于可能性,学生是有生活经验和知识经验的,这个课的重点是让学生由对可能性大小的定性描述过渡到定量刻画,加深对可能性大小的认识。因此,安排复习,既唤起了学生经验,又激发了学生进一步学习的热情。)

  二,创设情境,引导发现

  1,教学例1

  (1)例1场景图,提出问题。

  谈话:图上的同学在干什么你们打乒乓球时是怎么决定谁先发球的介绍一般比赛中的方法。

  提问:用猜左右的方法决定由谁先发球公平吗为什么

  (2)学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半。

  (3)问:可能性是一半用分数怎么表示你怎么想到是

  追问:2表示什么1呢

  (4)小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有"对"或"错"两种可能,猜对与猜错的可能性相等,都是。用这种方法决定谁先发球是公平的以前都是说一说可能性的大小,现在也可以用分数来表示可能性的大小。(完成板书)

  (设计意图:用学生熟悉的"猜球"情境引出数学问题,学生兴趣盎然,教学时学生凭生活经验会用几分之一来表示可能性的大小,但教学不能停留于学生会,更应引导学生去触及数学本质的东西,理解"为什么是"。学生经历了这样的推理过程,不仅能有意义地接受新知识,还为下面继续教学可能性打下了扎实基础。)

  2,同步体验。

  教师拿出一个口袋。

  (1)谈话:这里面原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几(学生肯定有疑问)

  (2)打开袋子(一红一蓝)问:有答案了吗你怎么想的

  (3)交流中明理:一共2个球,任意摸一个,有2种情况,摸到红球是1种情况,所以摸到红球的可能性是。

  (4)再往袋中放入一个绿球,任意摸一个球,摸到红球的可能性是几分之几为什么

  (5)疑问:为什么摸到红球的可能性会不同呢这说明可能性的大小和什么有关

  (6)小结:一共有几个球,红球有一个,摸到红球的可能性是几分之一。

  (7)追问:要使摸到红球的可能性是,口袋里至少要怎么放

  (设计意图:利用学生喜欢的"摸球"情境,设置多种不同形式的练习,巩固例1的数学思考方法,并安排了比较"为什么两个口袋里摸到红球的可能性分别是和"进一步体验怎样用分数表示可能性。)

  三,迁移和提升。

  教学例2

  出示例2中的实物图(逐一出示,学生说出各是什么牌)

  (1)问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几怎么思考的

  (2)交流后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是。

  (3)追问:摸到黑桃A的可能性是几分之几摸到其他每张牌的可能性呢

  (4)小结:一共有6张牌,摸到每张牌的可能性都是。

  2,提问迁移。

  (1)提问:从这6张牌,你还想到什么问题

  (2)指名口述问题,可能有:摸到红桃的可能性是几分之几摸到A的可能性是几分之几摸到2的可能性是几分之几……

  (3)逐题交流,重点交流第1个问题,明确各种思考方法。

  方法可能有:①一共6张牌,红桃有3张,摸到红桃的可能性是,也就是;②6张牌平均分成2份,红桃是1份,摸到红桃的可能性是;③摸到每张牌的可能性都是,红桃有3张,摸到红桃的可能性是3个,也就是。

  (设计意图:在开放民主的学习氛围中鼓励学生自主探索,独立解决新颖的问题,体会到思考方法的多样性,感受成功的喜悦。)

  3,对比提升。

  出示红桃A,2,3和黑桃A,2

  要求:用今天的知识说说可能性。

  想想:怎么用分数表示可能性的大小分母,分子各表示什么

  (设计意图:数学方法的得出应该经过一个多样到优化的过程,为了使每个学生都得到不同的发展,在这安排一个对比练习,使学生在刚才理解多种思考方法的基础上掌握用分数表示可能性大小的一般方法。)

  四,实践与应用。

  1,用数学语言来表示摸到红球的可能性。

  2,生活中的数学问题。

  问题一:(中奖规则)某超市正在进行迎新年大中大奖活动,购物满100元,可以到转盘上转1次指针,猜猜中奖规则是怎样的

  ▲学生凭生活经验阐述。

  ▲提问:虽然有些不同,为什么大家都认为指针停在红色

  区域是一等奖(指针停在红色区域的可能性最小,有利于商家)

  出示问题:(教材95页"练一练")

  追问:如果指针转80次,停在红色区域一定是10次吗

  小结:这只是根据可能性进行的预测,实际结果是不确定的,可能正好是10次,也可能大于10或小于10次。

  问题二:(游戏规则)教材第96页练习十八第3题。

  ▲桌上有9张卡片,任意摸1张,摸到每个数的可能性是几分之几

  小明和小红在玩游戏,出示规则:如果摸到奇数算小明赢,摸到偶数算小红赢,这个游戏公平吗

  追问:小红一定输了吗游戏规则怎么改就公平了。

  问题三:(挑选活动)教材第97练习十八第7题。

  (设计意图:可能性与生活联系密切,这里设计了多种形式的生活问题,给学生搭建了一个平台,让学生用数学知识去解释这些现象,从而巩固新知,感受数学的趣味和价值,使学生的知识技能,情感目标和价值观得到和谐的发展。)

  四,全课总结,感受价值。

  提问:今天我们学习了什么你有什么收获你觉得这些知识有什么用

  五,生活中的应用。

  (1)出示信息,说说感受。

  1,体彩"幸运七星"属于数字型玩法,即从0000000~9999999共1000万个号码中任选一个七位数号码组成,每个号码均从0~9共10个数字中开出,猜对第1个号码的可能性是,猜对前2个号码的可能性是,以此类推,"幸运七星"头奖的理论中奖可能性为。

  2,有一种概率天气预报,用百分数表示天气现象出现的可能性有多大。例如新浪网预报明天无锡地区降水的可能性是0%。

  (2)总结:可能性和生活联系很密切,课后请同学们做个有心人,用数学的眼光去观察生活,找找生活中哪些事件和可能性有关。

  (设计意图:数学源于生活,用于生活,捕捉一些生活信息,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的,进一步激发学生学习数学的兴趣。)

可能性教案4

  教学内容:

  小学数学三年级第五册104页主题图及第105页例1、例2。

  教学目标:

  1、通过猜测和简单实验,使学生初步体验有些事情的发生是确定的,有些事情则是不确定的,初步能用“一定”“可能”“不可能”等词语描述生活中发生的可能性。

  2、培养学生的口语表达能力和合作学习的能力。

  3、让学生在活动过程中懂得数学存在于现实生活中从而使学生产生积极的情感体验,激发学生学习的数学的兴趣。

  教学重难点:

  理解事物发生的可能性。

  教具准备:

  每组准备一个盒子,黄色和白色的乒乓球若干个。

  教学过程:

  一游戏激趣,导入新知。

  师:小朋友你们喜欢做游戏吗?现在我们来玩一个猜一猜的游戏,这里有一枚硬币,它就在我的拳头里,你们猜猜它会在哪只手里。[猜三次]硬币到底在哪只手里,我们只能靠猜测,可能在左手,也可能在右手,这就是事情发生的可能性,今天我们就一起来研究可能性。出示课题;《可能性》

  二、合作学习,探究新知

  1、摸球活动

  师:下面咱们再来玩一个游戏,老师这有一个盒子,盒子里装了一些球,下面请同学来摸看看摸出的是什么颜色的球?[学生摸球]

  师:谁能根据这些同学摸球的结果来猜猜盒子中装的.什么颜色的球?如果我们继续摸下去谁能用一句话来总结摸的结果呢?[学生回答]当我们摸的只有一种情况时,我们可以用“一定”这个词来描述。板书:一定

  2、小组摸球

  师:在你们的桌子上也有一个盒子,我们小组的每一个成员都来摸一次,大家记录结果这次的摸球又是怎样的情况呢?[摸完各小组汇报]

  师:那么根据我们摸球的出现的情况谁能用一句话来总结。[学生总结]反问:在老师的盒子里能摸到白色的球吗?为什么?

  有什么办法让它变成可能呢?[学生想办法]看来事情有时是在发生变化的,有时不可能的事情会变成可能。

  (评析:小组合作学习来探讨可能发生的情况。)

  3、六个例子

  师:我们刚才通过猜一猜,摸一摸用“一定”“可能”不可能来描述游戏中的情况,其实,在我们生活中同样有些事情是一定发生的,有些事情是可能发生的,老师这有生活中的六个例子,我们来判断一下[小组讨论]说明理由。

  三、动手操作

  师:看来我们都能解决不少的问题,不过我们只是说一说。

可能性教案5

  【教学内容

  数学书P94-96页例1,例2及"试一试","练一练"和练习十八的第1,2题。

  【教学目标

  1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

  2、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

  3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

  【教学过程】

  一、复习旧知,唤起经验。

  (游戏)要求:一定发生的就立正,不发生的就坐着不动

  (1) 太阳从东方升起

  (2) 明天要上学

  (3) 地球绕着太阳转

  (4) 明天会下雨

  明天会不会下雨呢?都有可能,但可能性是多少呢?这节课我们就来研究可能性的大小。(板书课题)

  二、创设情境,引导发现。

  举例:做游戏时用掷硬币的方法决定谁先开始,二个人每个人的可能性都是1/2。

  1、教学例1

  同学在打乒乓球时是怎么决定谁先发球的' ?

  提问:用猜左右的方法决定由谁先发球公平吗 为什么

  学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半.

  可能性是一半用分数怎么表示 你怎么想到是

  追问:2表示什么, 1呢

  小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有"对"或"错"两种可能,猜对与猜错的可能性相等,都是.用这种方法决定谁先发球是公平的。

  2、同步体验。

  拿出一个口袋。

  (1)谈话:这里面原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几 (学生肯定有疑问)

  (2)打开袋子(一红一蓝)问:有答案了吗 你怎么想的

  (3)交流中明理:一共2个球,任意摸一个,有2种情况,摸到红球是1种情况,所以摸到红球的可能性是().

  (4)再往袋中放入一个绿球,任意摸一个球,摸到红球的可能性是几分之几 为什么

  (5)疑问:为什么摸到红球的可能性会不同呢 这说明可能性的大小和什么有关

  (6)小结:一共有几个球,红球有一个,摸到红球的可能性是几分之一.

  三、迁移和提升。

  自学例2,并集体讲解

  “试一试”

  “练一练”

  四、实践与应用。

  1、”非常6+1”,共有12只蛋,9只金蛋,如果你是第一个打进电话的人,你成为幸运星的可能性是多少?如果第一个人砸了一个蛋是金蛋,而你是第二个打进电话的人,你成为幸运星的可能性是多少?.

  2、语文中的数学问题。

  用分数表示可能性的大小:

  平分秋色、十拿九稳、天方夜谭、百发百中

  3、练习十八1-2

  四、全课总结,感受价值.

  提问:今天我们学习了什么 你有什么收获 你觉得这些知识有什么用

可能性教案6

  教学内容

  小学数学第五册第九单元《统计和可能性》

  教学目标

  1、学生能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  2、使学生能够对一些问题简单事件发生的可能性作出描述。

  3、培养学生分析问题,解决问题的能力。

  4、在引导学生探索新知的过程中,培养学生合作学习的意识以及养成良好的学习习惯。

  教学重、难点

  1、使学生能够列出简单试验所有可能发生的结果,知道事件发可能性是有大小的。

  2、能够对一些简单事件发生的可能性作出描述。

  教具准备

  电脑课件、转盘、纸杯、白球、黄球、红球、盒子。

  教学过程

  一、激情导入,提示课题

  同学们,你们课间喜欢做游戏吗?在游戏前怎样决定谁先玩的呢?石头、剪刀、布这三种手式哪种最厉害呢?想和老师比试比试吗?如果老师和人们一起玩,你们认为有什么结果?学生发言(可能赢、可能输、也可能平)师生共同班几次,充分体验。

  今天这节课我们就继续研究有关可能性的问题。(板书课题)

  二、实验探索,学习新知

  活动一:摸名片

  1、学生制作自己的名片,注意写清姓名、性别、属相、班级、爱好、电话号码。

  2、学生自读游戏规则(课件出示)

  3、学生以小组为单位开始“摸名片”游戏,游戏后各组组长做好记录并统计结果。

  4、集体交流:汇总每小组的实验数据。引导学生:通过观察这些数据,你发现了什么?为什么摸出属牛的同学比较多,而摸出属鼠的同学比较少呢?

  5、结论:

  有的小组属牛可能性大,有的小组属鼠可能性小。有的小组属牛和属鼠的可能性一样大。

  6、这是为什么?可能性的大小与什么有关系?小组讨论。

  7、学生举例:生活中哪些事情存在可能性的现象?

  活动二:抛纸杯

  1、猜想:

  纸杯抛向空中落地时有几种可能。学生独立思考后回答。到底谁说得对呢?我们一起来做个试验。

  2、实验:

  每个人重复抛5次,并把实验结果记录下来。

  3、与同伴说一说,可能出现哪几种结果并写下来。

  4、结论:

  纸杯抛向空中落到地面后可能出现三种情况:杯口朝上、杯口朝下、躺在地面上。

  活动三:摸球

  1、出示盒子(里面两个黄球,一个白球)

  ①任意摸一个球,摸哪种颜色球的'可能性大。

  ②分组实验加以证明。

  ③小结:任意摸一个球,有2种结果,摸到黄球的可能性大,白球的可能性小。

  2、再放入3个红球,会出现哪种结果?摸到哪种球的可能性大,哪种球的可能性小,能摸出黑球吗?

  ①实验验证。

  ②小结。

  3、出示盒子(2个白球,2个黄球)

  师:一次摸出两个球,可能出现哪些结果?小组讨论并填表。

  4、扩展练习:

  ①前几天老师在一个商场门口发现了这样一种情况:一个人手里拿着一个布袋,布袋里红、绿两种玻璃球各5个,只需5角球就能玩一次,谁能在布袋里摸5次,摸5个红球或5个绿球就奖励5元钱,如果你在场你会不会去玩?为什么?

  ②学生模拟摸球游戏。

  ③小结:在布袋中能够摸出5个红球或5个绿球可能性非常小,这只是生活中最简单的骗术,在生活中还有许多形形色色的陷井,我们识破这些陷井的办法就是学好科学知识,用知识武装我们的头脑。

  三、总结

  这节课你有哪些收获?

可能性教案7

  《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。

  案例描述:

  教学目标:

  1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。

  2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。

  3、激发学生学习数学的兴趣,产生积极的情感体验。

  教学重点:

  感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。

  教、学具:、彩球、塑料袋

  教学过程:

  一、创设情景,初步感知

  1、初步感受事情发生的确定性

  (1)用“一定”来描述事情发生的确定性。

  师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?

  生:想看。

  师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?

  (学生有的说信,有的说不信)

  师:那我们就试试吧。

  (师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)

  师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?

  师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)

  把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?

  [设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]

  (2)用“不可能”来描述事情发生的确定性。

  师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?

  师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?

  [设计意图:在学生已经理解“一定”的基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的。至此,学生对确定性事件已经形成了初步的认识。]

  2、初步感受事情发生的不确定性。

  (1)用“可能”来描述事情发生的不确定性。

  师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?

  引导:用“可能”来描述事情发生的不确定性。

  (2)加深对“可能”的理解。

  请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。

  [设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]

  二、互动交流,深层体验

  1、“生本”对话,描述可能性。

  师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?

  [设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]

  2、揭示课题

  3、学习例2,判断可能性。

  出示例2,生独立判断,交流汇报。

  [设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的`能力。]

  三、联系生活,应用拓展

  1、“生生”对话。

  小组内活动:

  ①往袋中装球,用“一定、不可能、可能”说一句话。

  ②提出一个要求,根据要求来装球。

  小组间活动:

  小组派代表,向其它小组的同学提问题,当场解决。

  [设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]

  2、辨一辨。(书本习题)

  3、涂一涂。(书本习题)

  4、用“一定、可能、不可能”举一举生活中的例子。

  [设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]

  四、课堂总结,升华情感

  师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?

  教学反思:

  1、 较好地整好教学资源。

  这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。

  2、 灵活地组织数学活动。

  “数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。

  3、 精心设计教学对话。

  每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。

  (1) 师生对话

  在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。

  (2) 生本对话

  教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。

  (3) 生生对话

  在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。

  反思不足之处:

  在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。

可能性教案8

  (第一课时)

  教学目标:

  1、使同学了解有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性是有大小的,能用分数表示。

  2、结合生活实例,进一步让同学体验生活中存在的数学问题。

  教学重难点:使同学经历实验的具体过程,从中体验某些事情发生的可能性的大小。

  教学准备:白球1个、黄球3个、红绿两种颜色的`铅笔等。

  教学过程:

  一、情境、引入

  1、师述、情境:庆“庆六一”联欢会,教师要求每人都要扮演节目,节目的形式有:唱歌、跳舞、相声、小品等。用抽签的方法决定。

  小华在抽签之前想:我是金嗓子,最好让我抽到唱歌……

  2、讨论:小华肯定能如愿以偿吗?为什么?

  [点评]:给同学发明机会留有空间,让同学开动脑筋,捕获生活中的现象,将所学的知识和同学的生活实际紧密结合,加深对数学知识的理解。这一情境,是同学经历过并且有体验,所以他们知道小华有可能抽不到唱歌,有可能抽得到,但抽到的可能性不大,因为在这些签中只有一张签是唱歌,这就自然引出课题:可能性大小。

  3、小结:在我们的生活中,有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性有大有小。今天我们就学习(板书)可能性大小。

  二、实验探究

  1、摸球活动。

  活动规则:准备3个黄球,1个白球,球的大小一样,放进袋子里,搅拌一下。

  (1)同桌活动。每人摸10次,每次摸一个球,然后把摸出来的球放进去,搅拌后再摸第2次、第3次……填好摸20次的统计表(可用“正”字)。

  (2)同学分组活动。

  (3)观察:第一次实验结果与预测结果一样吗?

  (4)四人一小组活动,填好摸40次的统计表。

  (5)观察讨论:汇总后的结果与预测结果是否接近?

  (6)小结:摸的次数越多,结果与预测结果越接近。

  [点评]:这一活动体现了“动手实践、自主探索与合作交流”的学习方式,同学从实践中获取知识。

  2、练习教材89页中的1—4题。

  (1)同学独立考虑,进行练习。

  (2)集体交流,讨论学习情况,并说明你的理由。

  三、拓展、延伸

  1、在一个正方体中标出1、2、3三个数,符合下面要求:数字1和数字2的可能性都是1/6,数字3的可能性是2/3。

  2、摸奖活动。

  (1)盒子里有4红、2绿,两种颜色的铅笔,要求先说出你想摸一支什么颜色的铅笔?可能性是多少?然后到盒子里摸,假如说的和摸的颜色一致,就可以拿走这支铅笔。

  (2)盒子里有红色、蓝色、黑色三支一样的笔,假如随意拿出2支笔,可能出现多少种结果?

  [点评]:这是同学比较感兴趣的活动,富有情趣和挑战性,为同学提供充沛发展的空间。

  四、总结:这节课你有什么收获?

  [总评]

  本节课的关键在于关注了同学的学习过程,教师创设了一个有利于同学生动活泼主动发展的教育氛围,教师真正成为教学活动的组织者、引导者和合作者。从实际教学效果看,同学学得积极主动,时时闪烁着创新思维的火花。

可能性教案9

  教学设计

  1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)

  2、知道事件发生的可能性是有大小的(难点)

  一、情境导入

  在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?

  二、合作探究

  探究点一:必然事件、不可能事件和随机事件

  【类型一】必然事件

  一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()

  A、摸出的4个球中至少有一个是白球

  B、摸出的4个球中至少有一个是黑球

  C、摸出的4个球中至少有两个是黑球

  D、摸出的4个球中至少有两个是白球

  解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件、故选B、

  方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件)、若是不确定的,则该事件是不确定事件、

  变式训练:见《学练优》本课时练习“课堂达标训练”第1题

  【类型二】不可能事件

  下列事件中不可能发生的是()

  A、打开电视机,中央一台正在播放新闻

  B、我们班的同学将来会有人当选为劳动模范

  C、在空气中,光的传播速度比声音的传播速度快

  D、太阳从西边升起

  解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选D、

  变式训练:见《学练优》本课时练习“课堂达标训练”第2题

  【类型三】随机事件

  下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°、其中是随机事件的是________(填序号)、

  解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件、故答案是①③、

  变式训练:见《学练优》本课时练习“课堂达标训练”第6题

  探究点二:随机事件发生的可能性

  掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()

  A、一定是6

  B、是6的可能性大于是1~5中的任意一个数的可能性

  C、一定不是6

  D、是6的可能性等于是1~5中的`任意一个数的可能性

  解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数、要求可能性的大小,只需求出各自所占的比例大小即可、第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B错,D对、故选D、

  方法总结:不确定事件的可能性有大有小、骰子在掷的过程中,每个点数出现的可能性是一样的

  变式训练:见《学练优》本课时练习“课堂达标训练”第11题

  三、板书设计

  1、必然事件、不可能事件和随机事件

  必然事件:一定会发生的事件;

  不可能事件:一定不会发生的事件;

  必然事件和不可能事件统称为确定事件;

  随机事件:无法事先确定一次试验中会不会发生的事件、

  2、随机事件发生的可能性

  教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

  《6、1感受可能性》课时练习

  一、选择题(共15个小题)

  1、下列说法正确的是()

  A、随机事件发生的可能性是50%

  B、确定事件发生的可能性是1

  C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本

  D、确定事件发生的可能性是0或1

  答案:D

  解析:解答:对于A,随机事件发生的可能性大于0,而小于100%,是在一个范围之内,并不是一个确定的数值;对于B,确定事件,包括发生的可能性是0或1;对于C,应该是从中抽取10名学生的中考数学成绩作为一个样本;D是在B的基础上完整叙述,正确、故选D、

  分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

  6、1感受可能性同步练习

  一、选择——基础知识运用

  1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()

  A、摸出的是3个白球

  B、摸出的是3个黑球

  C、摸出的是2个白球、1个黑球

  D、摸出的是2个黑球、1个白球

  2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()

  A、不确定事件B、不可能事件

  C、可能性大的事件D、必然事件

  3、下列事件是必然事件的是()

  A、打开电视机正在播放广告

  B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次

  C、任意一个一元二次方程都有实数根

  D、在平面上任意画一个三角形,其内角和是180°

可能性教案10

  1、在简单的猜测活动中感受不确定现象,初步体验有些事件的发生是确定的 、有些则是不确定的。

  2、会用一定可能或不可能等词语描述生活中一些事情发生的可能性。

  教学重点:

  初步体验有些事件的发生是确定的 、有些则是不确定的。

  教学难点:

  能列出简单试验所有可能性发生的结果。

  教学关键:

  选取学生熟悉的生活情境及感兴趣的`游戏活动作为教学的素材,帮助学生理解数学知识

  教具准备:

  课件、硬币、珠子、彩球。

  教学过程:

  一、 创设情境,引入课题。

  师:同学们,在上新课之前呢,老师想问大家两个问题?

  1、明天是不是星期四?

  生:是。

  师:能确定吗?

  生:能。

  2、 明天是不是晴天?

  生:(可能会说),是,不是,不知道。

  师:分别让说是,不是,不知道的同学说一说自己的理由。

  师:也就是说明天是不是晴天我们能确定吗?

  生:不能。

  师:生活中就是这样,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。(板书课题)

  二、探究新知

  (一)、研究不确定现象

  1、师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?

  (出示幻灯片)请看大屏幕

  抛硬币。(例1)

  抛硬币活动要求:

  (1)、抛之前先猜一猜硬币落地后,是正面向上?还是反面向上?

  (2)、分组进行抛硬币活动,注意记录和观察硬币落地后,有几种结果。

  (3)、活动后,同学们想一想怎么用语言准确的描述描述硬币落地后的出现的结果。

  2、师:教师引导学生用规范语言描述:这位同学说的挺好的,挺恰当的,我们就可能也可能.来说这种现象好不好。(板书:可能也可能.)

  3、练习。

  好,再来看一下,现在老师手里有一个盒子,老师找几个同学来摸球,摸到球后,请同学大声的告诉大家你摸到的是什么球。

可能性教案11

  教学目标:

  1、通过猜测、游戏活动、生活体验让学生初步体验有些事件发生是确定的,有些则是不确定的。

  2、能结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能做出合理判断,并能简单地说明理由。

  3、培养学生的表达能力和逻辑推理能力。

  4、培养学生学习数学的兴趣和良好的合作学习态度。

  教学重点:

  能对一些事件的可能性做出正确判断。

  教学准备:

  1、学具:彩色笔1盒、学习答题卡等。

  2、教具:课件、纸盒(3个)、乒乓球(白色和黄色各12个)。

  教学时间:

  1课时

  教学过程:

  一、游戏激趣,导入课题

  师:同学们,喜欢玩游戏吗?(喜欢)玩过“剪刀、石头、布”的猜拳游戏吗?

  1、先让学生以同桌的形式试一试,再请两名同学到台前玩猜拳游戏。玩之前猜一猜:谁会赢呢?举手表决,你们支持谁呢?

  2、猜拳2-4次,出现不同的结果,问:你们猜对了吗?

  3、教师小结:刚才的`猜拳游戏中,有可能是自己赢,也有可能是对方赢,这就是一种可能性。(相机板书课题:可能性)

  [设计意图]通过学生熟悉的猜拳游戏活动,激发学生学习的兴趣。

  二、摸球游戏,探究新知

  师:(出示1号盒,教师摇一摇)听一听,猜到老师给大家带来了什么?(让学生猜一猜,再开始摸球游戏)

  1、初步感知确定性事件。认识“一定”、“不可能”

  (1)、出示装有8个白球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?用一句话来表示。(学生猜测,板书:一定)

  (2)、出示装有8个黄球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?我们可能从这盒子里摸出白球吗?(板书:不可能)

  你们为什么那么肯定?(板书:确定)

  2、初步感知不确定性事件。认识“可能”

  出示装有4个黄球和4个白球的盒子,每人只能摸一次。用一句话猜猜你摸到的结果。(板书:可能)

  当事情的结果是不确定的,我们用“可能”来描述。(板书:不确定)

  [设计意图]学生通过摸球游戏活动,在猜一猜、摸一摸、说一说中,感受事件发生的可能性,能用一定、不可能、可能等词语做出合理的判断。

  三、联系生活,巩固新知(教学例2)

  师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?

  1、观察课本第105页的例2,思考后在书上作出判断。

  2、与组内的同学交流自己的想法。

  3、汇报,小结。

  重点提示:图1教师借助视频资料帮助学生理解“地球每天都在转动”是一定的;图5通过一些图片资料展示,让学生理解“吃饭时,人用左手拿筷子”是可能的;图6借助调查资料显示让学生明白“世界上每天都有人出生”是一定的。

  [设计意图]通过教学例2,让学生体验生活中可能性的现象,感受数学与日常生活是相互联系的。

  四、巩固练习,强化新知

  1、完成练习二十四第1题。

  (1)、指明学生判断事件可能性的方法。

  (2)、重点提示:图1大王花像粪便一样臭,再列举缅桂、兰花等花是香的花,所以“花是香的”是不确定的。图2教师可播放“月球的运动”视频帮助学生理解“月球绕着地球转”事件发生的必然性。

  2、完成练习二十四第2题。(按要求涂一涂)

  (1)、要求学生读懂题意后再涂一涂。学生独立完成。

  (2)、学生汇报,教师小结。重点提示:图1的5个小方块全部涂成红色即可;图2的5个圆形只要不涂成蓝色,其它颜色和五颜六色都可以;图3的五个锥体至少有1个或2个以上黄色。

  3、完成练习二十四第3题。(结合你的生活经验,在下面的句子里用上“可能”、“一定”、“不可能”这些词。)

  [设计意图]通过涂一涂、想一想、说一说练习,培养学生的表达能力,巩固强化可能性知识。

  五、课堂小结

  这堂课,你学到了什么?(指名说,教师小结)

  板书设计:

可能性教案12

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的`理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案13

  教材分析

  从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球的可能性。

  学情分析

  是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。

  教学目标

  1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。

  2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。

  3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

  4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

  教学重点和难点

  重点:理解并掌握用分数表示可能性的大小的基本思考方法。

  难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。

  教学过程

  一、复习旧知,唤起经验。

  同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的`应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。

  板书:可能性

  这一环节的设计是从学生感兴趣的事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。

  二、创设情境、引导发现

  1、教学例1

  (1)课件出示例1场景图 ,提出问题。

  足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?

  提问:用猜左右的方法决定由谁先发球公平吗?为什么?

  2、同步体验:试一试

  这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

  三、迁移和提升。

  教学例2

  1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)

  2、提问迁移。

  3、对比提升。

  这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

  四、实践与应用。

  1、生活中的数学问题。(一边说一边出示“转一转”课件)

  2、出示练一练

  这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。

  五、巩固练习

  六、课堂小结

  这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。

可能性教案14

  教学目标:

  1.体验有些事件的发生是确定的,有些则是不确定的;

  2.知道事件发生的可能性是有大小的;

  3.培养学生学习数学的兴趣,形成良好的`合作学习的习惯。

  教学重点:

  经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出简单判断,并做出适当的解释。

  教学难点:

  在实验过程中引导学生形成正确的科学认识。

  教学过程:

  一、创设情境,导入新课

  学生们,我们来开展一次摸球比赛,好不好?每人轮流摸一次球,哪个队摸到的白球次数多就取胜。

  每队拿一个袋子,袋子里装着白球和黄球。 (男生队的袋子里3白1黄,女生队的袋子里34黄1白) 今天我们就要来研究这方面的内容

  二、实践探索,初步体验

  1.学生小组操作(出示要求)

  (1)在还没摸之前,请大家猜一猜,白球会摸到几次?黄球会摸到几次?

  (2)大家的猜测是否正确呢?下面请组长负责记录,其他组员轮流摸球,看哪一组完成得又快又好!

  (3)完成后观察统计的结果,你发现了什么? 抛正方体

  2.做完了摸球游戏,下面我们要来玩抛正方体。

  (1)请大家猜一猜,会出现什么结果?

  (2)出示统计表,师简要说明。

可能性教案15

  第六单元可能性

  第2课时可能性练习课

  教学内容:

  课本第67—69页

  教学目标:

  1、进一步体会事件发生的可能性,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。

  2、让学生感受数学与生活实际的联系,激发学生学习数学的兴趣,培养自主探索的意识和与他人团结协作的精神。

  教学重难点:

  能对简单随机现象发生的可能性大小作出定性描述。

  教具准备:

  数字卡片、红、蓝铅笔、正方体、红、黄正方体

  教学过程:

  一、揭示本课练习内容,板书课题。

  二、完成练习十第5—9题。

  1、第5题。

  先让学生看图说说转动每个转盘,指针落在红色区域的可能性分别是怎样的,再逐一回答书上的问题。

  2、第6题。

  出示题目,让学生思考放铅笔的方法,再按要求完成操作。

  展示、交流。

  3、第7题。

  摸出的结果可能有多少种?

  (共有9个样本,因而就是9种)

  摸出单数的'可能性大,还是双数的可能性大?

  (单数几个?双数几个?)

  4、第8题

  学生做这样的正方体,同桌合作,试一试,并填写统计图。

  5、第9题。

  先估计再实验。

  三、思考题

  列举出所有可能出现的结果,再进行判断。

  四、课堂总结

  通过这节课的练习,你有什么收获呢?

  教学反思:

【可能性教案】相关文章:

可能性教案09-11

可能性教案(15篇)01-31

可能性教案15篇11-14

实用的可能性教案三篇09-23

关于可能性教案汇总5篇04-17

精选可能性教案合集十篇04-15

关于可能性教案模板汇总7篇05-02

可能性说课稿06-07

《可能性》说课稿05-24