分数的性质教案
作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。我们该怎么去写教案呢?下面是小编整理的分数的性质教案,希望能够帮助到大家。
分数的性质教案1
目标
通过复习,使学生进一步理解分数的意义,分数的基本性质和有关概念。
教学及训练
重点
仪器
教具
复习内容和过程
教学札记
一.复习分数的意义
1.这个分数表示(),它的分数单位是(),有()个这样的单位。
2.吨这个分数单位”1“是(),它的分数单位是(),再添上()个这样的单位就是1吨。
2个吨是(),吨里有8个()吨
讨论:单位”l“与分数单位有什么区别?有什么联系?
师生共同小结:
单位”1“不仅表示一个物体,一个计量单位,还可以表示许多物体组成的整体。
分数单位是表示把单位”1“平均分成若干份,其中1份的数。
2.分数与除法的关系。
(l)引导学生讨论课本第131页第7题的第2小题,前半题分数可以表示一个量,当一个量不能用整数个计量单位来表示时,可以用分数表示,例如:5米。后半题分数可以表示两个量的'关系,例如:每段钢筋是全长的。第3小题表示求一个数是另一个数的几分之几,也是表示两个量的关系。
(2)()÷()==()÷()
3÷()==()÷9
师生共同小结:
被除数÷除数=用字母表a÷b=(b≠0)
想一想:分数与除法有什么联系,有什么区别?
3.真分数和假分数。
用直线上的点表示下面各题,课本第131页的第8题,要求学生把假分数和带分数写在直线上方,真分数写在直线下方。从图中清楚地看出真分数、假分数与1的关系。
真分数<l假分数≥1带分数>1
二.复习分数的基本性质。
l.口答:
分数的基本性质是什么?它与商不变性质有什么联系和区别?
什么是约分?什么是通分?什么叫最简分数?大家做课本第131页的第9、10两题。
师生共同小结:
约分、通分都是分数基本性质的运用。比较分数的大小除了用同分母、同分子比较方法外,还可以灵活地使用,以1为标准,以中介分数作标准等方法进行比较。
2.假分数、整数与带分数的互化。
做课本第131页的第11题,说一说假分数怎样化成带分数或整数?带分数怎样化成假分数?
三、全课总结(略)
四、作业布置:课本第131页”期末复习“第12、13、14题。
分数的性质教案2
分数基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
根据分数的基本性质,我们能够把任何一个分数变换成另一个分数单位的等值分数。也就是说,分数基本性质解决了分数单位的换算问题。统一了分数单位,异分母的分数才能进行加减运算。
例如,+=+
=×2+
=×(2+1)
=。
在分数的运算中,把异分母分数变成同分母的分数的过程,叫通分;通分是把较小的分数单位变换为较大的分数单位。在分数的运算中,有时也需要把较大的分数单位变换成较小的分数单位,这个过程叫约分。
例如,×=
=
=。
通分和约分的理论根据都是分数的基本性质。
分数基本性质还是分数集合分类的一个标准。根据分数基本性质,可以把分数集合中所有等值分数都归为一类,于是分数集合就被分成无数个这样的等值分数的类别。如,上述和属于同一类,和属于同一类。
在分数集合的每一个等值分数的类别中,都有且只有一个最简分数。所谓最简分数,就是它的分子和分母除1以外再也没有其他的公因数了。如,上述、都分别是它们所在的等值分数类别中的最简分数。
在分数集合中,最简分数就是每一个等值分数类别的代表。确定这一个代表的重要意义是,确保分数运算与自然数运算一样,运算结果具有单值性(唯一性)。这就是为什么要对运算结果进行约分,直到最简分数为止。
小数单位0.1、0.01、......分别与分数单位、、......是等价的,小数是特殊的分数。小数与分数可以互相转化。
例如,把0.25化为分数。
方法1:(根据小数的意义)
0.25=0.01×25
=×25
=
=。
方法2:(把小数视为分母是1的分数)
0.25=
=
=
=。
方法1和方法2中,每一步都是可逆的,所以如果把化为小数,也有与上述对应的两种方法。此外,把分数化为小数还可以直接利用除法,即=1÷4=0.25。
在上述两种方法中,分数的基本性质都发挥了作用。
分数基本性质与商不变规律,事实上是从不同的形式表示相同的规律。本质相同而形式不同,主要是适应不同的情境。所以,从商不变规律的重要性亦可反观分数基本性质的重要性。
遇到小数除法,根据商不变规律可以转化为整数除法,从而以整数除法为基础把把小数除法与整数除法统一起来。
例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;
或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.
如果把2.4÷0.4写成分数形式,也未尝不可,不过将出现被称为“繁分数”的分数形式。把繁分数化为简单分数,也必须根据分数的基本性质。
例如,=
=
=6.
有了“商不变规律”,在算式的等值变形中可以避免出现繁分数的形式,所以繁分数的概念很早以前就已经不出现在小数数学的教科书中了;即使出现了“繁分数”,我们就把它当作一般分数来对待,也不必专门为之增加一个新名称。
当沟通了分数、除法与比的本质的联系后,我们可以想到,其实比也有一个与分数基本性质等价的基本性质。即比的前项与后项都乘或除以相同的数(0除外),比值不变。
根据比的这一基本性质,比可以进行等值变形。在比的实际应用中,如果不掌握比的等值变形,就会寸步难行。不过,比的等值变形不能局限于比的化简。在笔者《分数认识的三次深化与发展》中,已经说明把按比分配转化为分数问题来解决的.时候,事实上要把整数比转化为分数比的形式,而且这些表示部分与整体关系的分数的总和还必须等于1(即部分之和等于整体)。
下面再看两个实例,进一步体会比的必要性。
例1一种混凝土是由水泥、沙子和石子混合成的,其中水泥与沙子的比是1︰1.5,沙子与石子的比是1︰。这种混凝土中水泥、沙子和石子的比是多少?
问题中两个已知的比,分别表示混凝土中两个成分的比,而且这两个比的基准不一致。解决这个问题的关键是统一比的基准。因为这两个比中都含有沙子的成分,所以选择沙子为统一的基准,就能把两个比统一起来。
解:水泥︰沙子=1︰1.5=10︰15=︰1;
沙子︰石子=1︰。
所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。
当某种混合物的成分多于两种,并要表示它各种成分之间的倍比关系时,比的表示形式就得天独厚志显示出它的优越性。
例2(阿拉伯民间流传的数学故事)有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的、、。儿子们想来想去没法分:他们所得的都不是整数,即分别为、和,总不能把一匹马割成几块来分吧?聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,还剩一匹我照旧牵回家去。”这样把分的问题解决了。
学习比的知识,我们都会变得和阿拉伯兄弟的那个邻居一样聪明。这个知识就是比的等值变形。
解:︰︰=(×12)︰(×12)︰(×12)
=6︰3︰2,
而且6+3+2=11。
所以,老大、老二、老三分别分得的马分别是6匹、3匹和2匹。
这位阿拉伯邻居一定是一名优秀教师,他善于把上述抽象的演算过程直观地表现出来。他牵来自己的一匹马,凑成12匹马,这个12恰是这三个分数分母的最小公倍数,这个数也是把这三个分数的比化为整数比的关键所在。
综上,可以看到分数基本性质的重要地位和作用:
⒈是把分数从一个分数单位换算为另一个分数单位的基础;
⒉是分数的通分与约分的根据,也是一些算式等值变形的重要途径之一;
⒊是分数集合被分成等值分数类别的分类标准,在每一个类别中都有且只有一个最简分数,使得分数运算的结果具有唯一性。
分数的性质教案3
教学内容人教课标实验教材五年级下册P75分数的基本性质
教学目标
1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学关键:经历预测猜想——实验分析——合情推理——探究创造的过程
教学过程:
一、故事导入,确定目标。
1.唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?
2.通过这节课的学习同学们就知道其中的奥秘了!板书课题,共议目标。
二、目标的教学
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之一、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?现在你们知道孙悟空为什么笑了吗?请同学回答。猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
把二分之一的.分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
师板书:或者除以
板书八分之四同时除以0,问:这个式子成立吗?(打上问号)不成立,为什么?因为0不能作除数,0不能作除数,所以这个式子是错误的。(画*)我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)不成立,因为在分数当中分母相当于除数,除数不能为0。对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画*)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话?0除外。师板书:0除外。到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
”同时“和”相同的数“(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
3、教学例2
出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24
分数的性质教案4
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的大小比较。
教学准备 分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报 纠错
二、集中练习
教师出示:比较下面各组分数的大小
1、 和 和
2、 和 和
请同学评讲
课本练习68页第九题 把下面分数填入合适的圈内。
比 大的分数有:
比 小的分数有:
师生讨论:怎样快速的分类?
自由说一个比 的分数。并说出理由。
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10= =
小红:4÷7=
因为 = = >
所以 >
答:小明的平均步长长一些。
四、拓展练习:
下面3名小棋手某一天训练的成绩统计
总盘数赢的.盘数赢的盘数占总数的几分之几
张129
李107
赵138
谁的成绩最好?
小组合作集体解决题型。
三个分数的大小比较,怎样比较较好?
五、课堂作业
68页第11题
分数的性质教案5
第一课时
课题:分数的基本性质
教学目标:
1、知识与技能
1、能说出分数的基本性质。
2、能说出分数基本性质与商不变性质的关系
2、过程与方法
3、会通过操作发现分数的分子分母扩大缩小的规律,并推导出基本性质。
4、会运用分数的基本性质解决数学问题。
3、情感态度与价值观
5、培养学生自主探究、合作学习、创新思维的能力。
6、让学生在学习过程中养成互相帮助,团结协作的良好品德。
7、通过知识间的内在联系,渗透辩证唯物
学情分析
从学生思维角度看,分数的基本性质,在日常生活中应用广泛,是以分数大小相等为基础的。两个分数大小相等,学生容易联想到分数的分子、分母分别相等。为此,就需要课件先通过直观动画使学生了解、两个分数的分子、分母虽然不同,但是分数大小是相等的。接着研究分数的分子、分母是按照什么规律变化的,要学生一下子说明道理比较困难,就需要一步一步分析,最终让学生自己归纳出分数的基本性质。
重点难点:
学习重点:熟悉掌握分数的基本性质及基关键词同时、同数、不为0
学习难点:分数的基本性质在具体解题环境中的具体应用
教具学具:
多媒体课件,学具袋(内含正方形纸,线段,直尺)
教法学法:
讲授法,活动探究法,任务驱动法。
活动设计:
通过正方形和线段的平分探究和的大小关系。
教学课时:
一课时
教学过程:
一、精彩导入
同学们,今天刘老师能在这里和在大家一起研究数学问题,感到非常的开心。你们想看老师的魔术表演吗?(想),好,那老师就在在座的各位面前献丑了(表演)还想看吗?(想)那我就给大家表演一个数学的魔术吧!
出示课件:56=1012=1518=20xx
师:我能写无限多个与56相等的除法算式来,这个魔术你们会吗?那我有一个除法算式45,请你写出与它相等的除法算式(点名)教师板书:45
师:哇,你真厉害!那你能给大家介绍一下,你是把被除数和除数怎么变化了,但商还是不变了?
生:(引导说出)被除数和除数同时扩大或缩小相同的倍数(0除外),商不变
师:是的,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。这在数学中有一个专有名词叫商不变的性质。(板书:商不变的性质)
全班同学把商不变的性质说一遍,好吗?(全班齐读)
【设计意图】:
本节设计是为了
二、活动探究
师:我们知道,分数和除法是有着密切联系的,除法算式都可以写成分数,那么这些除法算式可分别改写成几分之几呢?
生:学生回答,教师出示课件:
师:上面的这些算式的商是相等的,那么由它们改写的下面这些分数的大小关系又怎样呢?
生:也是相等的,出示“=”
师:请同学们看,这些分数的分子,分母各不相同,可它们的大小却相等,难道除法中商不变的性质,分数中也有大小不变的性质?同学们,猜猜看,有没有?
生齐答:有
师:它是把分数的分子和分母怎样变化后,分数的大小不变?谁来说说?点名回答
师:你们同意吗?
生:同意
师:那刘老师把同学们的。猜想写到黑板上。
板书:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:数学是一门很严谨的学科,光凭猜想是不能下结论的,我们得想办法去证明它。
师:举一个很简单的例子(出示课件)
师:比如,如果根据同学们的猜想,它的分子分母同时乘2得到,这个和是相等的,反过来看,如果把的分子和分母同时除以2,这个和的大小还是相等的。
师:那么我们用什么办法证明=呢?请同学们取出学具袋中所有学具,充分利用它们想出证明和相等的办法,谁想的办法最多,谁就是最聪明的,下面开始吧!教师行间指导。
师:同学们想了几种办法?(各不相同),想出一种方法的请举手先说说,请有两种方法的同学举手再说说,依次说完(出示学生说的课件内容)
师:同学们想出这么多办法,真不简单!(范文先生网)刘老师也有几种办法要介绍给大家,我们学过分数与除法的关系,可以用分子除以分母,用小数表示分数值你们看(出示课件:可以写为12=0.5=2 4=0.5)
它们的结果都是0.5,说出和的大小怎样?(相等)
师:通过刚才一系列的证明,看来分数中确实有这样的大小不变的规律,其实,数学家们早就发现了这个规律,还给它起了个名字,叫做分数的基本性质
板书:分数的基本性质
师:刚才我们把同时乘或除以的是一个相同的整数,那么同时乘或除以一个相同的小数,又会怎样呢?(出示课件:)
师:如果把的分子和分母同时乘或除以2.5,那么又变成了几分之几呢?它们的大小还会相等吗?请同学们猜猜?(会或不会)光凭猜想是不行的,现在我们一起来验证。
师:请一大组算的分数值,请二大组算乘2.5后变成了几分之几?再请三大组算除以2.5后变成了几分之几?引导: =再把它改成1520,求它的商,=再把它改成2.43.2,求它的商。
师:请一大组齐声说得数是0.75,二大组的.得数呢?三大组呢?这三个数的商都是0.75,这说明的分子和分母同时乘2.5和同时除以2.5后大小都是怎样的?(不变的)
师:是的,分数的分子和分母不仅可以同时乘或除以相同的整数,分数的大小不变,同时乘或除以一个相同的小数,分数的大小是不变的,那么,分子和分母可以同时乘或除以任何相同的数吗?(0不能)如果分子,分母同时乘0后,变成了0,可以吗?(不可以,分母是0没有意义,另外也改变了的大小啊)(出示课件)
师:是的,这个相同的数必须0除外(板书:0除外)
【设计意图】:
本节设计是为了
三、巩固练习
⒈
师:同学们真棒啊!不仅发现了分数的基本性质,还能想出各种办法证明它,完善它,下面我们一起来看看书上怎么说的?请同学们打开课本第页的内容,看到分数的基本性质请做上记号,看完的同学请举手示意给老师(大部分同学看完后)请把书上分数的基本性质齐读一遍。
师:同学们读的好!那么同学们会不会运用分数的基本性质解决一些问题呢?老师试目以待,敢不敢迎接老师的挑战?
师:我有一个分数(板书)你能说出与它下相等垢分数吗?每次都问:你是把它的分子,分母同时怎样?问:这样的分数你能写出多少个?
生:无数个
师:是的,任何一个分数都会有无数个分数与它相等地。
【设计意图】:
本节设计是为了
⒉
师:出示课件
例2把和化成分母是12而大小不变的分数(请一位同学读题)并点名回答,并问你是怎么想的?
师:请同学们看“做一做”
师:再请看下一题(判断题)
⒈把分数变成后,分数的值就扩大了2倍()
⒉==()说明”同时”很重要。
⒊==()说明不仅要”同时”,还要求这个数要怎样?”相同”
⒋==()
⒌==()
⒍==()说明了什么很重要?”0除外”
⒎==()
师:通过这个题目的练习,请同学们想想,在运用分数的基本性质时,要注意哪些问题呢?(同时,相同,0除外)板书时老师把这几个词语换成红字。
师:那我们再把分数的基本性质齐读一遍,把这3个关键词重读,大家会读吗?要不要老师示范一遍?(全班齐读)
【设计意图】:
本节设计是为了
⒊
师:课件出示小明蛋糕题
小明过生日时,全家人在一起吃蛋糕,小明分给爸爸这个蛋糕的,分给妈妈这块蛋糕的,小明给自己分,谁分的最多,谁分得最少?
方法一:=方法二:==
因为因为
所以所以
师:小明真是个孝顺的孩子,分蛋糕会给爸爸,妈妈多分上些,希望同学们也要像小明一样,能够孝顺父母。
【设计意图】:
本节设计是为了
⒋
师:再请看下一题
的分子加上6后,分母要加上几,分数的大小不变。
1)(6+2)2=4 54-5=15
2)==
师:这是一道思考题,试试看,你能想出哪些办法?
【设计意图】:
本节设计是为了
四、全课总结
我想问问大家,你们今天有什么收获?(点名回答)
师:是的,只要学习就会有进步,希望同学们每天努力学习,每天都有新的进步,个个成为知识渊博而又充满自信的人。这节课我们就上到这里,同学们再见!
【设计意图】:
本节设计是为了
五、板书设计:
分数的基本性质
分子和分母同时乘或除以相同的数,分数的大小不变
商不变的性质
被除数和除数同时扩大或缩小相同的倍数(0除外),商不变
六、课后反思:
第一:我能够在选取学生作品时选取有代表性的作品,这为接下来的教学起到了重要的作用。
第二:我能较好的放手让学生自己去发现,自己去总结,这对培养学生的探索能力以及小组合作能力起到了很好的作用。但在组织学生进行分类时,我的语言不够准确,导致了部分学生分类的方向出现了偏差。
在今后的教学当中,我要加倍注意数学语言的严谨性和准确性。通过这节课的教学,我发现了很多自己的不足之处。特别在细节的处理和语言的严谨性方面,我做得还不够好,今后应加强这方面的锻炼。
分数的性质教案6
教学目标:
1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的.、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。
教学重点:
理解分数的基本性质。
教学难点:
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学过程:
一、创设情境,激趣引新
1、师:故事引入,揭示课题
同学们,你们听说过阿凡提的故事吗?今天老师这里有一个老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事
故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
3、学生猜想后畅所欲言。
4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?
二、探究新知,解决问题
1、 动手操作、形象感知
(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?
(2)学生独立操作验证。
方法1、涂、折、画的方法
方法2、计算的方法。
方法3:商不变的性质。
(3)观察,说说你发现了什么?
分数的性质教案7
教学内容:
教材第98-79页练一练,练习十五第10-18题。
教学要求:
1、使学生加深理解分数的基本性质,认识分数与小数基本性质的联系,能比较熟练地应用分数的基本性质进行通分和约分。
2、使学生进一步掌握小数、分数和百分数互化的方法,能比较熟练地进行互化。
教学过程:
一、揭示课题
1、学生练习
(1)下面各数有什么关系;为什么?
0.30.300.300
学生回答后板书:0.3=0.30=0.300
指出:在小数的末尾添上0或者去掉零,小数的大小不变。这是小数的性质。
(2)提问:分数与除法有什么关系(板书A÷B=(B≠0))
谁来说说商不变的规律是什么?
3、引入新课。
在除法里有商不变的规律,根据分数与除法的`关系在分数里是不是有类似的规律?这就是我们今天先要复习的分数的基本性质。(板书分数的基本性质)
三、复习分数的基本性质。
1、说明分数的基本性质。
提问:你能根据商不变的规律,说出分数的基本性质吗?
出示人分数的基本性质。
谁来用分数举例说出分数的基本性质。
把78页的例子填写完整,集体校对。
2、学生练习。
(1)“练一练”第1题。
学生填在课本上指名口答,集体订正。
3、认识小数的性质与分数的基本性质的联系。
把0.3=0.30=0.300改写成分数
通过观察、上面等式表示什么,下面等式表示什么,改写后得出这两个等式说明什么?为什么小数性质和分数的基本性质会是一样的呢?
指出:(1)小数实际上是分母是10、100、1000……的分数,所以小数的性质和分数的性质是一致的。
(2)小数的末尾添上。实际上就相当于分子、分母同时乘以10或100、1000……这样的数相反也是除以10、100、1000……这样的数所以小数的大小也不变。
4、复习通分和约分。
1、分数的基本性质有哪些应用?(板书:通分、约分)
2、做“练一练”第2题。
两人板演,齐练,集体订正。
四、复习小数、分数和百分数的互化。
1、(板书:数的改写)
2、整理方法。
自学课本79页的回答,教者逐一板书如课本图。
3、做“练一练”第3题
学生做在课本上,检查订正。
5、学生练习。
(1)练习十五第12题,指名口答
(2)提问:分数都能化成有限小数吗?
(3)思考怎样的分数可以化成有限小数?
(4)思考练习十五第15题。
说一说,每道题可以怎样比较大小。
四、综合练习
1、练习十四第16题(口答)
2、练习十四第17题。
五、课堂小结(略)
六、课堂作业。
练习十五12、14、18题。
分数的性质教案8
教学目标:
1、学生能理解和掌握分数的基本性质;
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生的动手操作能力和观察、比较、分析、概括的思维能力
教学重点:理解和掌握分数的基本性质
教学难点:运用分数的基本性质解决实际问题。
教学过程:
一、导入新课
你眼中的猪八戒是什么样的?请用词语来表述一下。
今天老师给大家带来一个关于猪八戒的小故事,你们猜猜猪八戒会做出怎样的选择:唐僧把一张饼分给三个徒弟,三份分得有点不一样,一份是一块,一份是两块,还有一份是三块,你们认为猪八戒会挑选哪一份?猪八戒是否真的会得如所愿?(PPT进行展示)
二、探究分数的基本性质
1、出示PPT,学生说出分数,(用PPT展示:首先重合,然后进行对比。)再让学生用三个图片进行重合并质疑:分子、分母都不相同,这些数的大小怎么会一样?
2、引导学生观察分子分母的变化:
(1)从左往右看,三个分数得分子和分母是按什么规律变化的`?(分子、分母同时乘以相同的数,分数的大小不变)
(2)从右往左看,三个分数得分子和分母是按什么样的规律变化的?(分子、分母同时除以相同的数,分数的大小不变)
3、进行总结:分数的分子和分母都乘以或都除以相同的数,分数的大小不变。
质疑:可以同时乘以或者同时除以0吗?
总结分数的基本性质:分数的分子和分母都乘以或都除以相同的数(0除外),分数的大小不变。
三、殊途同归利用商不变验证分数基本性质
从商不变规律来验证分数的基本性质。
被除数和除数同时除以一个非0的数,那么商不变。
分子相当于被除数,分母相当于除数,它们也同时除以一个非0的数,大家想一下:分数的大小会发生变化吗?
刚才我们是从实际的例子中总结出了分数的基本性质,现在我们是用逻辑推理的形式证明了分数的基本性质,殊途同归。
只不过不同的是,在除法中,叫做商不变规律;在分数中,是分数的基本性质。
四、运用提升
1、奇效的红方块,能用几分之几表示?
分数的性质教案9
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.【演示课件“数的整除”】
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为15÷5=3,所以15是倍数,5是约数. ( )
因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
2.练习.
(1)想一想,小数点移动位置,小数大小会发生什么变化?
(2)
(3)下面这组数有什么特点?它们之间有什么规律?
0.108 1.08 10.8 108 1080
三、全课小结.
这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的
联系和区别,并且强化了对知识的运用.
四、随堂练习
1.判断下面的'说法是不是正确,并说明理由.
(1)一个数的约数都比这个数的倍数小.
(2)1是所有自然数的公约数.
(3)所有的自然数不是质数就是合数.
(4)所有的自然数不是偶数就是奇数.
(5)含有约数2的数一定是偶数.
(6)所有的奇数都是质数,所有的偶数都是合数.
(7)有公约数1的两个数叫做互质数.
2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇数有( );偶数有( );质数有( );合数有( );
既是质数又是偶数的数是( ).
4.按要求写出两个互质的数.
(1)两个数都是质数.
(2)两个数都是合数.
(3)一个数是质数,一个数是合数.
5.说出下面每组数的最大公约数和最小公倍数.
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作业
1.把下面各数分解质因数.
24 45 65 84 102 475
2.求下面每组数的最大公约数和最小公倍数.
36和48 16、32和24 15、30和90
六、板书设计
数的整除分数、小数的基本性质
数学教案-数的整除 分数、小数的基本性质
分数的性质教案10
教材分析
分数的基本性质是我们学习分数运算的重要基础,它包括约分和通分。约分是将分数化简为最简形式的过程,通分是将不同分母的分数转化为相同分母的过程。掌握了分数的基本性质,我们才能顺利进行分数的四则运算。除法是分数运算中的重要内容,分数其实就是除法的一种表达方式。在进行除法运算时,我们要特别注意商不变的规律,即被除数乘以一个数得到的商是不变的。理解分数与除法的关系,能够帮助我们更好地掌握分数的运算规律,为学习更复杂的数学内容打下坚实的基础。
教材设计了两个学习活动,让学生在寻找相等的分数中感受分数的大小相等关系,为后续观察分数的基本性质提供了丰富的素材。学生将通过这两组相等的分数,分别观察并寻找每组分数的分子和分母的变化规律,然后展开交流讨论,最终总结出:当分数的分子和分母同时乘以或除以相同的数(零除外)时,分数的大小保持不变。
学情分析
学生已经掌握了分数与除法的关系,以及商不变规律等知识,为本课学习打下了坚实的基础。五年级学生已经开始养成合作学习的习惯,具备一定的问题分析和解决能力,能够在老师的.指导下完成“提出问题—探索—解决问题—应用”的学习过程。
在教学中,我通常采用引导学生探索和小组合作学习相结合的方式。通过这种方法,学生可以自己发现分数的基本性质,并学会运用这些性质将一个分数化简为分母不同但值相等的分数。这种教学方法能够有效提高教学效果,激发学生的学习兴趣,培养他们的独立思考能力和团队合作精神。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。
1、讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”
2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观 评价 ,为后续探究营造良好氛围。
让学生通过动手操作,激发他们对学习的兴趣,通过合作探索,初步了解到一些分数的分子和分母不同,但这些分数的大小却是相等的。
通过观察不同形式的现象,我们可以逐步总结出其中的规律。这种由表面到深层的探索方式,有助于我们逐步深入了解事物,逐步发现其中的奥秘。
学生们通过观察和实践,逐渐探索出了分数的基本性质。为了更深入地理解分数的特点,我们需要全面概括分数的基本性质。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数学学习中的一个重要环节。通过引导学生观察和探究,可以帮助他们更好地理解分数的概念。在教学中,我注重让学生参与讨论和交流,组织小组活动让每个学生都有机会表达自己的观点,互相启发,共同探讨。通过这种方式,学生能够逐渐理解分数的分子和分母按照一定规律变化,而分数的大小却保持不变的特点。这样的教学方法有助于帮助学生建立起数与数之间联系和变化的认识。
在本节课中,由于我对学困生关注度不够高,导致他们在应用基本分数性质的过程中遇到困难。小组合作探究中的小组学习也需要不断改进。
分数的性质教案11
1、分数的基本性质-苏教版五年级下册数学教案
第1课时
分数的基本性质
教学内容:教科书第60~61页,例
1、例
2、练一练,练习十一第1~3题。教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。教学重点:让学生在探索中理解分数的基本性质。教学重点:在探索分数基本性质的过程中理解分数的基本性质。
教学难点:在探索分数基本性质的过程中,综合、抽象出分数的基本性质。教学准备:教学光盘,正方形纸。教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。你能看图写出哪些分数?你是怎样想的?说出自己的想法。
二、教学新课
(一)教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?(2)你知道其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?(3)演示验证。
(二)教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?
学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的`数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)讨论分数基本性质中你认为哪些词语比较关键?为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(三)比较分数基本性质与除法中商不变性质。
根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
三、巩固练习
1、完成练一练。
(1)完成第1题。
涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第2题。
独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
2、完成练习十一(1-3)第1题。
平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?第2题。
独立完成,交流想法。第3题
学生独立完成填空,集体订正。
四、布置作业:
《补充练习》第44页第1、2、3、4、5题。拓展题:
五、总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
在巩固练习部分增加以下练习:
(1)把下面各分数化成分母是6而大小不变的分数。
1/2
8/24
10/30
(2)把下面各分数化成分子是1而大小不变的分数。
4/16
5/15
7/35
(3)把下面的数按要求填到指定的括号里。
60/84
4/6
14/21
20/28
15/21
30/45
15/35
10/12
与5/7相等的分数();与2/3相等的分数()。
分数的性质教案12
教学目标
1 、知识与技能:
使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、过程与方法:
学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3 、情感态度与价值观:
激发学生积极主动的情感状态,体验互相合作的乐趣。
教学重难点
1、教学重点:
使学生理解分数的基本性质。
2、教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学工具
课件
教学过程
一、故事情境引入
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的xx,老二分到了这块地的xx。老三分到了这块的xx。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
2、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4
3、说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
4、让学生大胆猜测:
在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
(随着学生的回答,教师板书课题:分数的基本性质。)
二、新知探究
1、动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
你发现了什么?
(2)观察比较后引导学生得出:
它们的分子、分母各是按照什么规律变化的?
(3)从左往右看:
平均分的份数和表示的份数有什么变化?
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:
引导学生观察明确:
xx的分子、分母同时除以2,得到什么?
板书:
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
(7)小结:
分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。
2、分数的基本性质与商不变的性质的比较。
在除法里有商不变的`性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3、学习把分数化成指定分母而大小不变的分数。
教学例2
(一)把分数化成分母是12而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
(二)巩固提升
1、下面算式对吗?如果有错,错在哪里?为什么会这样错。
2、判断,并说明理由。
(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。(×)
(2)把x的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。(√)
(3)把x分子乘以3,分母除以3,分数的大小不变。(×)
课后小结
这节课我们学习了什么内容?你们有了什么收获呀?
利用分数的基本性质时,应该明确一下几点:
①分子、分母进行的是同一种运算,只能是乘以或除以。
②分子、分母乘或除以的是相同的数。而且必须是同时运算。
③分子、分母同时乘或除以的数不能使0。
④分数的大小是不变的。
板书
分数的基本性质。
分数的分子和分母同时除以相同的数,分数的大小不变。
分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。
分数的性质教案13
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点: 理解掌握分数的基本性质。
教学难点: 归纳分数的性质。
学生准备: 长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
唐僧师徒四人在路上遇到了一个巨大的西瓜,大家决定平均分成四块。孙悟空机智地将西瓜切成四块,但猪八戒贪吃,偷偷吃了一块。接着,大家又把西瓜平均分成八块,这次猪八戒更加贪吃,吃掉了其中的两块。最后,西瓜被分成了十六块,猪八戒再次偷偷吃了四块。通过这个故事,让学生在实践中体会到分数的基本性质,引发他们对数学的探究兴趣。看完故事后,可以向学生提问:你从这个故事中了解到了哪些数学信息?你想到了什么问题?
让我们来讨论八戒没有多吃到饼的事情。我们可以通过折一折、分一分、比一比的方式来说明。让我们亲自动手操作,将一块饼折成三份,然后比较八戒吃了一份之后,剩下的两份和原来的一块饼是相等的。尽管分子和分母不同,但这两个分数是相等的,这是为什么呢?让我们通过课件直观感受这个规律,揭示其中的奥秘。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、好的,我来修改一下:学生们可以尝试将一张正方形纸张对折多次,每次对折后,正方形被平均分成了几份?涂色部分又有几份呢?可以让不同的同学展示不同的对折方法,看看他们得到的结果有何不同。同时,大家可以思考一下:涂色的部分可以用什么分数来表示?这个分数与1/4是否相等呢?
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,但它们的大小却相等。你们能找出它们之间的变化规律吗?请同学们四人为一组,讨论这两个问题。
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
从左往右看:将1/4扩大4倍,得到2/8;分子和分母同时乘以2,得到4/16。变化规律是分子和分母同时扩大相同的倍数。从右往左看:将4/16缩小为1/4,将2/8缩小为1/4。变化规律是分子和分母同时缩小到最简形式。
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
当我们将分数的分子和分母同时乘或除以相同的数(0除外),分数的值不会改变,这是分数的基本性质。
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,同学们,今天我们学习了关于圆的周长和面积的.知识。通过课堂学习,我们了解到了如何计算圆的周长和面积,并且掌握了相应的计算方法。在课堂练习中,大家也积极参与,对这些知识有了更深入的理解。接下来,我们可以继续拓展这个主题,比如探究圆与其他图形的关系,或者深入了解圆的性质和应用。希望同学们能保持学习的热情,积极探索更多有关圆的知识。下节课我们将继续深入学习,一起探究更多有趣的数学知识。期待在下节课与大家再次相见!
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在备课之前,精心设计课堂内容和教学思路,准备好所需教具。课前,可以通过一些活动来活跃课堂气氛。通常情况下,课堂使用黑板为主,但也可以偶尔利用多媒体设备进行教学。学生们对此都很感兴趣,特别是在创设情景的时候,他们会很投入。随后的动手操作环节也很重要。不过学生们可能会在表达方面有所保留,不太敢大胆发言。他们对问题的回答可能不够清晰。在引导学生主动探索、逐步获取规律的过程中,教师起到了重要的作用。最后,通过学生们一一解答并归纳分数性质,如从左到右分子分母都变大但分数大小不变,从右到左分子分母都变小但分数大小不变,让学生掌握了这些规律。教师强调让学生记住分数的性质关键词,如“都”、“乘以或除以”、“相同的数”、“零除外”,并通过多层次的巩固练习加深他们的理解。最后,通过愉快的找朋友游戏让学生轻松地应用所学知识。
分数的性质教案14
教学目标:
使学生能比较熟练地把低级单位的名数聚成高级单位的名数,正确地解答求一个数是另一个数的几分之几的应用题。能比较熟练地比较两个分数的大小。
教学过程:
一、基本练习
1.复习有关单位的进率。(长度、面积、体积、质量等)
2.P80,1
3.说一说比较两个或三个分数的大小的方法。
4.P80,2,3看清要求,分清大小。
二、应用练习
1.怎样求一个数是另一个数的几分之几?要注意什么?和求一个数是另一个数的`几倍有什么相同和不同的地方?
2.P81,4—6
三、巩固提高
1.选条件编应用题:苹果有5箱,梨有10箱,桃有20箱。
2.根据自己的实际编一道求一个数是另一个数的几分之几的应用题。
3.小结。
分数的性质教案15
教学目标:
1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。
2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。
3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。
教学重点:
理解分数的意义
教学难点:
理解把许多物体组成的一个整体看作单位1。
教学方法:
自主探究、 合作交流教具多媒体课件
教学过程:
一、回顾旧知,导入新课。
谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。
谈话:对于分数还想了解的.知识,进而导入新课。
二、合作探究,构建新知
(一)初步感知。
出示情境图1船模试航。
教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学
信息?提出什么数学问题?
教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?
学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的方法。学生分组活动时,教师参与到学生的小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5。
在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?
(二)深入探究
出示情境图2航模放飞
谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?
学生提出问题,教师适时梳理。
如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?
学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?
解决第一个问题:学生分组学习,教师要参与学生的小组活动中。
全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?
通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2。
课件演示将4架飞机平均分的过程,并板书结论。
解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的1/3呢?。从而引导学生得出结论。
(三)观察比较
谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?
引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?
学生进行观察比较,同桌讨论,全班交流得到结论。
通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。
(四)拓展应用
谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?
学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。
交流:你利用什么材料,得到一个什么分数,你是怎样得到的?
总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。
(五)总结概括
谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。
举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的不同。
结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
(六)看书质疑。
学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。
三、巧设练习,深化理解
1、自主练习1、2
2、涂色部分能用分数表示吗?(课件出示)
3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?
独立完成,进行交流。
教学反思:
创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。
【分数的性质教案】相关文章:
分数的性质教学反思12-15
分数的基本性质教案模板6篇10-27
分数的基本性质说课稿 03-01
《分数的基本性质》说课稿05-15
《分数的基本性质》的说课稿06-25
分数的基本性质教案模板汇编八篇04-15
《分数的基本性质》教学反思04-22
《分数的基本性质》说课稿范文09-20
《分数基本性质》教学设计01-19
《分数的基本性质》教学设计03-19